27 research outputs found

    Validation of AclarusDx™, a blood-based transcriptomic signature for the diagnosis of Alzheimer's disease.

    No full text
    International audienceAbstract: Biomarkers have gained an increased importance in the past years in helping physicians to diagnose Alzheimer's disease (AD). This study was designed to identify a blood-based, transcriptomic signature that can differentiate AD patients from control subjects. The performance of the signature was then evaluated for robustness in an independent blinded sample population. RNA was extracted from 177 blood samples (90 AD patients and 87 controls) and gene expression profiles were generated using the human Genome-Wide Splice Array™. These profiles were used to establish a signature to differentiate AD patients from controls. Subsequently, prediction results were optimized by establishing grey zone boundaries that discount prediction scores near the disease status threshold. Signature validation was then performed on a blinded independent cohort of 209 individuals (111 AD and 98 controls). The AclarusDx™ signature consists of 170 probesets which map to 136 annotated genes, a significant number of which are associated with inflammatory, gene expression, and cell death pathways. Additional signature genes are known to interact with pathways involved in amyloid and tau metabolism. The validation sample set, after removal of 45 individuals with prediction profile scores within the grey zone, consisted of 164 subjects. The AclarusDx™ performance on this validation cohort had a sensitivity of 81.3% (95% CI: [73.3%; 89.3%]); and a specificity of 67.1% (95% CI: [56.3%; 77.9%]). AclarusDx™ is a non-invasive blood-based transcriptomic test that, in combination with standard assessments, can provide physicians with objective information to support the diagnosis of AD

    Distinctive RNA Expression Profiles in Blood Associated With Alzheimer Disease After Accounting for White Matter Hyperintensities

    No full text
    BACKGROUND: Defining the RNA transcriptome in Alzheimer’s Disease (AD) will help understand disease mechanisms and provide biomarkers. Though the AD blood transcriptome has been studied, effects of white matter hyperintensities (WMH) were not considered. This study investigated the AD blood transcriptome and accounted for WMH. METHODS: RNA from whole blood was processed on whole-genome microarrays. RESULTS: 293 probe sets were differentially expressed in AD versus controls, 5 of which were significant for WMH status. The 288 AD-specific probe-sets classified subjects with 87.5% sensitivity and 90.5% specificity. They represented 188 genes of which 29 have been reported in prior AD blood and 89 in AD brain studies. Regulated blood genes included MMP9, MME (Neprilysin), TGFβ1, CA4, OCLN, ATM, TGM3, IGFR2, NOV, RNF213, BMX, LRRN1, CAMK2G, INSR, CTSD, SORCS1, SORL1 and TANC2. CONCLUSIONS: RNA expression is altered in AD blood irrespective of WMH status. Some genes are shared with AD brain

    Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is characterized by progressive neuropathology and cognitive decline. We performed a cross-tissue analysis of methylomic variation in AD using samples from four independent human post-mortem brain cohorts. We identified a differentially methylated region in the ankyrin 1 (ANK1) gene that was associated with neuropathology in the entorhinal cortex, a primary site of AD manifestation. This region was confirmed as being substantially hypermethylated in two other cortical regions (superior temporal gyrus and prefrontal cortex), but not in the cerebellum, a region largely protected from neurodegeneration in AD, or whole blood obtained pre-mortem from the same individuals. Neuropathology-associated ANK1 hypermethylation was subsequently confirmed in cortical samples from three independent brain cohorts. This study represents, to the best of our knowledge, the first epigenome-wide association study of AD employing a sequential replication design across multiple tissues and highlights the power of this approach for identifying methylomic variation associated with complex disease
    corecore