2,607 research outputs found

    Electroproduction of \u3ci\u3epπ\u3c/i\u3e+\u3ci\u3e​π\u3c/i\u3e- Off Protons at 0.2 \u3c \u3ci\u3eQ\u3c/i\u3e\u3csup\u3e2\u3c/sup\u3e \u3c 0.6 GeV\u3csup\u3e2\u3c/sup\u3e and 1.3 \u3c \u3ci\u3eW\u3c/i\u3e \u3c 1.57 GeV with the CLAS Detector

    Get PDF
    This paper reports on the most comprehensive data set obtained on differential and fully integrated cross sections for the process ep → e\u27pπ+π −. The data were collected with the CLAS detector at Jefferson Laboratory. Measurements were carried out in the as yet unexplored kinematic region of photon virtuality 0.2 \u3c Q2 \u3c 0.6 GeV2 and invariant mass of the final hadron system W from 1.3 to 1.57 GeV. For the first time, nine independent one-fold differential cross sections were determined in each bin of W and Q2 covered by the measurements. A phenomenological analysis of the data allowed us to establish the most significant mechanisms contributing to the reaction. The nonresonant mechanisms account for a major part of cross sections. However, we find sensitivity to s-channel excitations of low-mass nucleon resonances, especially to the N(1440)P11 and N(1520)D13 states in kinematic dependencies of the one-fold differential cross sections

    Enhanced fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs)

    Get PDF
    Depositing very thin organic films on the surface of arrays of asymmetric split-ring resonators (A-SRRs) produces a shift in their resonance spectra that can be utilized for sensitive analyte detection. Here we show that when poly-methyl-methacrylate (PMMA) is used as an organic probe (analyte) on top of the A-SRR array, the phase and amplitude of a characteristic molecular Fano resonance associated with a carbonyl bond changes according to the spectral positions of the trapped mode resonance of the A-SRRs and their plasmonic reflection peaks. Furthermore, we localize blocks of PMMA at different locations on the A-SRR array to determine the effectiveness of detection of very small amounts of non-uniformly distributed analyte

    Consistent alpha-cluster description of the 12C (0^+_2) resonance

    Full text link
    The near-threshold 12C (0^+_2) resonance provides unique possibility for fast helium burning in stars, as predicted by Hoyle to explain the observed abundance of elements in the Universe. Properties of this resonance are calculated within the framework of the alpha-cluster model whose two-body and three-body effective potentials are tuned to describe the alpha - alpha scattering data, the energies of the 0^+_1 and 0^+_2 states, and the 0^+_1-state root-mean-square radius. The extremely small width of the 0^+_2 state, the 0_2^+ to 0_1^+ monopole transition matrix element, and transition radius are found in remarkable agreement with the experimental data. The 0^+_2-state structure is described as a system of three alpha-particles oscillating between the ground-state-like configuration and the elongated chain configuration whose probability exceeds 0.9

    The quantum Hall effect in graphene samples and the relativistic Dirac effective action

    Full text link
    We study the Euclidean effective action per unit area and the charge density for a Dirac field in a two--dimensional spatial region, in the presence of a uniform magnetic field perpendicular to the 2D--plane, at finite temperature and density. In the limit of zero temperature we reproduce, after performing an adequate Lorentz boost, the Hall conductivity measured for different kinds of graphene samples, depending upon the phase choice in the fermionic determinant.Comment: Conclusions extended. References added. 9 pages. 1 figur

    Asymptotics for turbulent flame speeds of the viscous G-equation enhanced by cellular and shear flows

    Full text link
    G-equations are well-known front propagation models in turbulent combustion and describe the front motion law in the form of local normal velocity equal to a constant (laminar speed) plus the normal projection of fluid velocity. In level set formulation, G-equations are Hamilton-Jacobi equations with convex (L1L^1 type) but non-coercive Hamiltonians. Viscous G-equations arise from either numerical approximations or regularizations by small diffusion. The nonlinear eigenvalue Hˉ\bar H from the cell problem of the viscous G-equation can be viewed as an approximation of the inviscid turbulent flame speed sTs_T. An important problem in turbulent combustion theory is to study properties of sTs_T, in particular how sTs_T depends on the flow amplitude AA. In this paper, we will study the behavior of Hˉ=Hˉ(A,d)\bar H=\bar H(A,d) as A→+∞A\to +\infty at any fixed diffusion constant d>0d > 0. For the cellular flow, we show that Hˉ(A,d)≀O(logA)for all d>0. \bar H(A,d)\leq O(\sqrt {\mathrm {log}A}) \quad \text{for all $d>0$}. Compared with the inviscid G-equation (d=0d=0), the diffusion dramatically slows down the front propagation. For the shear flow, the limit \nit lim⁥A→+∞Hˉ(A,d)A=λ(d)>0\lim_{A\to +\infty}{\bar H(A,d)\over A} = \lambda (d) >0 where λ(d)\lambda (d) is strictly decreasing in dd, and has zero derivative at d=0d=0. The linear growth law is also valid for sTs_T of the curvature dependent G-equation in shear flows.Comment: 27 pages. We improve the upper bound from no power growth to square root of log growt

    Boundary conditions in the Unruh problem

    Get PDF
    We have analyzed the Unruh problem in the frame of quantum field theory and have shown that the Unruh quantization scheme is valid in the double Rindler wedge rather than in Minkowski spacetime. The double Rindler wedge is composed of two disjoint regions (RR- and LL-wedges of Minkowski spacetime) which are causally separated from each other. Moreover the Unruh construction implies existence of boundary condition at the common edge of RR- and LL-wedges in Minkowski spacetime. Such boundary condition may be interpreted as a topological obstacle which gives rise to a superselection rule prohibiting any correlations between rr- and ll- Unruh particles. Thus the part of the field from the LL-wedge in no way can influence a Rindler observer living in the RR-wedge and therefore elimination of the invisible "left" degrees of freedom will take no effect for him. Hence averaging over states of the field in one wedge can not lead to thermalization of the state in the other. This result is proved both in the standard and algebraic formulations of quantum field theory and we conclude that principles of quantum field theory does not give any grounds for existence of the "Unruh effect".Comment: 31 pages,1 figur

    Stochastic model for population migration and the growth of human settlements during the Neolithic transition

    Get PDF
    We present a stochastic two-population model that describes the migration and growth of semisedentary foragers and sedentary farmers along a river valley during the Neolithic transition. The main idea is that random migration and transition from a sedentary to a foraging way of life, and backwards, is strongly coupled with the local crop production and associated degradation of land. We derive a nonlinear integral equation for the population density coupled with the equations for the density of soil nutrients and crop production. Our model provides a description of the formation of human settlements along the river valley. The numerical results show that the individual farmers have a tendency for aggregation and clustering. We show that the large-scale pattern is a transient phenomenon which eventually disappears due to land degradation

    Measurements of the Gamma(Upsilon)p -\u3e p ’pi(+)Pi(- )Cross Section with the CLAS Detector for 0.4 GeV2 \u3c Q(2) \u3c 1.0 GeV2 and 1.3 GeV \u3c W \u3c 1.825 GeV

    Get PDF
    New results on the single-differential and fully integrated cross sections for the process Îłvp -\u3e p\u27π+π- are presented. The experimental data were collected with the CLAS detector at Jefferson Laboratory. Measurements were carried out in the kinematic region of the reaction invariant mass W from 1.3 to 1.825 GeV and the photon virtuality Q2 from 0.4 to 1.0 GeV2. The cross sections were obtained in narrow Q2 bins (0.05 GeV2) with the smallest statistical uncertainties achieved in double-pion electroproduction experiments to date. The results were found to be in agreement with previously available data where they overlap. A preliminary interpretation of the extracted cross sections, which was based on a phenomenological meson-baryon reaction model, revealed substantial relative contributions from nucleon resonances. The data offer promising prospects to improve knowledge on the Q2 evolution of the electrocouplings of most resonances with masses up to similar to ~ 1.8 GeV

    Effects of Transport Memory and Nonlinear Damping in a Generalized Fisher's Equation

    Full text link
    Memory effects in transport require, for their incorporation into reaction diffusion investigations, a generalization of traditional equations. The well-known Fisher's equation, which combines diffusion with a logistic nonlinearity, is generalized to include memory effects and traveling wave solutions of the equation are found. Comparison is made with alternate generalization procedures.Comment: 6 pages, 4 figures, RevTeX
    • 

    corecore