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When both protons and negative ions are accelerated in the same linac, at the same time new problems arise concerning
suppression of beam coherent and incoherent oscillations caused by errors in doublet adjustment. Although the main
parameters of the focusing channel do not vary if the sign of particle charge is reversed, the individual beam trajectories
of protons and negative ions are different. New techniques for beam position control are suggested and their efficiency
is evaluated by computer modelling. It is shown that a transverse artificial displacement of doublet axes can be used as
a rather efficient means to shift the positive and the negative beam in the same direction. Such axis displacements of
two successive doublets combined with axis displacement of individual lenses in each of these doublets, all produced
electrically, make it possible to place the positive and negative beams at any required point in the transverse phase-space
plane. Beam axial alignment appeared much less efficient than might be desirable in order to suppress beam oscillations.
Production of new beam oscillations with the phases and amplitudes properly chosen is shown to be more efficient than

beam alignment along the linac axis.

A global control of focusing field throughout the linac is briefly discussed as a possible method to reduce oscillations

through off-resonance tuning.

Simultaneous acceleration of both protons and
negative H™ ions has been proposed in high energy
linacs (e.g. in the Los Alamos Meson Facility or in
the 600 MeV linac now under development at the
Radiotechnical Institute of AS USSR). The trans-
verse action of a strong focusing channel on a beam
depends on the sign of the beam particles. Alterna-
tion of particle sign is equivalent to a global
change of polarity in all lenses of the focusing
channel or to interchange of the two transverse
planes. It does not affect in any way the main
constants of a channel such as u transverse
oscillation phase shift per period of a channel,
Vmin—the minimum value of normalized oscilla-
tion frequency over a period and 4"-the modula-
tion factor of the beam envelope.

Transverse displacements of strong focusing
channel elements give rise to coherent oscillations
of both proton and H™ beams. The rms intensities
of the oscillations over many linac examples appear
to be the same for the two components of a beam
as well as the main constants of a channel. However
in each particular case the two intensities differ
from each other. Therefore new and more compli-
cated demands for beam position control have
to be satisfied.
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The consideration below is outlined for a side-
coupled linac used as the high energy part of the
above mentioned linacs.

COHERENT OSCILLATIONS OF
A TWO-COMPONENT BEAM

Let us consider a focusing channel of FDO
structure as seen by a proton beam. If Ax,, and
Ax,, are doublet input and output end displace-
ments from the axis of a linac, the beam output
displacement and inclination may be determined
from the following relation

X4 _ Axou A‘xin
L)

where M, and M are the matrixes of focusing and
defocusing lenses and ¢ = (Ax,, — Ax,;,)/(2&), &
being the lens length. Beam displacement at the
output of a doublet may be reduced to corre-
sponding displacement at a doublet centre
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If the matrix of the focusing system between the
centres of two subsequent doublets

cos i+ asin u —sin u
M, = v €)

n

—v(1 + a?)sinpy cosu — asinp

is knownt, the maximum displacement of beam
centre in the channel following the doublet con-
sidered may be determined in terms of equivalent
beam displacement at the doublet centre

v N2 20 ,
X max =V (1 + o )x+0 + X+0X+0
max min
+ X' )
W +0>

min
where v, is the v value for the period with its
origin chosen in such a way to provide o = 0 at
both of its ends.
If the matrices of focusing and defocusing lenses

are represented as

1 -
[ cos A& —sin A&
M, = A ;
| —Asin Al cos A¢ |
[ 1 . (5)
cosh A& —sinh Aé
M, = A
| Asinh AE cosh A¢ |

and A¢ <1 the following expressions may be
derived for equivalent beam displacements
Xpo=(A?A;Ex o = —HAD* A — (AD? A,

(6)

where

_ Ax,, + Ax;, Ax,, — Ax;,

B 2 2

and terms higher than (A{)* are neglected.

If protons are replaced by H™ ions then the
signs must be changed in all (A¢)? terms, leading
to the following expressions for corresponding H™
beam displacements:

X_o= —(AE? A; Ex_o = — HAE* A + (AE)? A,.
(7

A ;A=

In Eq. (4) only the « sign has to be reversed.

t o and v may be found by derivation of matrix (3) for each
specific case.

After substitution of (6) and (7) into (4) one may
see that maximum transverse shifts of proton and
H™ beams downstream from the displaced doublet
are indeed different. If however the displacements
of doublet ends are mutually independent (their
average values vanish and the dispersions are

equal) the rms values x2,, for both beam com-
ponents are identical:

2= (—A—é—)j[v(l + a?)

max 2 Jmin

2|l 1 |—=
- 3¢ (A& + vé—z](Ax)z.
®)

Beam behaviour in the y-plane is of similar
nature. A doublet displacement gives rise to
coherent oscillations of both beams. Amplitudes
of the two oscillations differ from each other as
well as from the amplitudes of x-plane motion.

If (Ax)*> = (Ay)?® the rms amplitudes of all four
oscillations are just the same.

If all doublets in a channel have random dis-
placements the above derived single-doublet con-
clusions remain valid.

SUPPRESSION OF COHERENT
OSCILLATIONS IN TWO-COMPONENT
BEAM

If a certain value of radius is assumed as a critical
one, a two-component beam would exceed this
value with higher probability then a one-compo-
nent beam while rms inaccuracy of doublet
manufacturing and adjustment is assumed the
same for both cases. This is shown in Figure 1,
where a certain value of radius is plotted along the
horizontal axis while the probability for the beam
to exceed this radius is plotted along the vertical
axis. The results represented in Figure 1 were
obtained by Monte-Carlo modelling of transverse
proton and H™ motion in the side-coupled part of
the linac.! In every realization of the channel,
the ends of a doublet were displaced from the linac
axis independently of each other with an rms
shift of 0,1 mmt. The following procedure of
computer modelling was used. First the proton
beam was transmitted through both vertical and

+ If true tolerances were assumed represented in B. P. Murin'
and if correlation provided by step method of doublet adjust-
ment? were taken into account beam oscillations would be
approximately twice weaker than those shown in Figure 1.
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TWO-COMPONENT BEAM |
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FIGURE 1 Probability of (y > ya,) VS Ymax curves for the
side-coupled linac without any correction. y is the maximum
beam displacement in the linac. The curves were obtained from
data received by computer for 140 random realizations.

horizontal channels with randomly displaced doub-
lets and the maximum beam position shift was
taken for the two channels. Then all magnetic
field polarities in both channels were changed and
the procedure was repeated. From the two maxi-
mum beam position shifts each corresponding to
a certain polarity of the channel the smaller one
was chosen as a maximum single-component
shift for a given realization, while the greater was
taken as a maximum two-component shift for the
same realization.

It is obvious from Figure 1 that beam dis-
placements may achieve a rather noticeable value
and therefore some special control system is
needed to suppress or diminish coherent transverse
oscillations.

Correcting beam shift in a transverse plane may
be accomplished either by a special dipole steering
magnet or by adding a dipole component to the
quadrupole lens field. The latter may be accom-
plished either by disturbing the current balance
in the lens coils or by mechanical motion of the
relevant lens axis. Beam position monitors can be
used in such a system as quite natural sensors of
beam displacement from the axis of a linac.
For each transverse plane at least four correctors
and two monitorst are obviously required to
provide complete beam adjustment. While the
linac! was under design four various methods of
correction were studied:

1) Mechanical displacement and tilt of two
doublets D1 and D2 (Figure 2a).

2) Magnetic field control in two pairs of steering

T Each of the monitors is supposed to measure position of
both proton and H™ beams.
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FIGURE 2 Three variants of a beam correcting assembly.
D-doublets, L-lenses, M-steering magnets, BPM-beam position
monitors, S-accelerating tanks.

magnets M1 — M4, placed at the ends of two
adjacent doublets (Figure 2b).

3) Control of dipole components in doublets
D1 and D2 (the dipole fields in both lenses of a
doublet are the same) and of steering field in
magnets M1 and M2 (Figure 2c).

4) Independent control of four dipole compo-
nents in the four lenses of two adjacent doublets
(Figure 2a).

In all cases beam position is measured by the
monitors BPM1 and BPM2 located at the input
and output ends of the tank just beyond the
correcting arrangement. Each of the monitors
provides the position measurement of both proton
and H™ beam.

The first three methods were discarded for
various reasons: the first of them contained
mechanical arrangements; the second and the
third were based on steering magnets and therefore
required more space between adjacent tanks than
the fourth one which seems to be the most attrac-
tive. The fourth method was approved for the
project and several modes of operation were tested
by computer. The tests revealed a rather satis-
factory convergency of beam setting onto the
axis of a linac and confirmed the possibility of
beam positioning by empirical determination of
required dipole components without solving cor-
rection Egs. (12) derived in the following section.

Multipole components of the doublet field that
usually accompany the dipole component are a
common disadvantage of all correction methods
suitable for two-component beams. These compo-
nents may cause undesirable distortions of particle
distributions over transverse phase planes. Com-
puter modelling was used to estimate such dis-
tortions. In most cases they turned out to be
quite negligible.
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A detailed consideration of the fourth beam
correction method is presented in the following
section.

THE BEAM CORRECTING ASSEMBLY

Let us consider the beam correction assembly
shown in Figure 2a and adjusting the beam say
in the x-direction. If §, (i = 1, 2, 3, 4) are equivalent
displacements of lens axes in the first and the
second doublets and

5, o
A, = [0], (i=1,23,4) )

zero beam coordinates are achieved as soon as the
following vector equations are satisfied:

a) for the proton beam
(E—My)A, + M[(E — M)A,
+ M MJ[(E - M)A,
+ M(E — M)A+ M X 111 =0; (10)
b) for the H™ beam
(E— M)A, + M (E - M)A,

+ MM [(E — M))A,

+ M [(E — M)A+ M X;, 111 =0; (11)
where X, and X, are beam centre vectors at the
input of the beam correcting assembly, E is the
unit matrix and M, is the matrix of a tank, acting
as a defocusing lens in both transverse directions.

Using half sum and half difference of Eqgs. (10)
and (11) and vectors

! )
X _ X

X:u=[ ] and XW=[ }
xou xou

of precorrection beam centres at the first beam
position monitor BPM1 one may derive the follow-
ing system of four linear equations for lens axis
displacements J; (i = 1, 2, 3, 4)
(Xou + X5u)/2 = @1101 + a130; + ;1303 + a146,;
(o + X5)/2 = a3101 + ap,0; + a3305 + a340,;
(Xou = Xo)/2 = a3,0; + a3,0, + a3303 + a3404;
(ou + X5u)/2 = 4101 + 8420, + 04303 + a4 04
12
Constants q,; are expressed as (terms higher than

(A&)* neglected)
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where C,, C, and C; are the elements of the M,

matrix:
c, C
M,=|"1' 72|
° [Cs Cl]

If all four lens axes are shifted by J, (i = 1,2, 3,4),
where §; are the roots of the system (12), then
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coherent oscillations are completely suppressed
at the output of the beam correcting assembly.
However inside the assembly, beam displacements
may be even greater than without correction.

In practice solution of the system (12) may be
replaced by iterative adjustment of the two beams
on the axis of a linac at both beam position
monitors. An estimation of a;; values has been
made in order to find a convenient correction
procedure. As shown by the estimation the most
convenient controlling combination of 9, seems to
be (6, or d,), (85 or d,), (4, and §, simultaneously)
and (6; and J, simultaneously). In other words
there are axes of lenses L1, L4 and of doublets
D1 and D2 that are to be shifted for beam position
correction. Such a correction may be explained
in a following way. The dipole component in a
single lens of a doublet acts essentially as a steering
magnetic field, i.e., causes noticeable displacements
of two beams in opposite directions and leaves the
centre of the two beams almost unchanged.
On the other hand a dipole component applied
in both lenses of a doublet acts on the centre of
the two beams leaving the mutual position of the
beams only slightly changed. Combining doublet
dipole component change with that of a single
lens it is possible to provide an independent
control of both proton and H™ beam positions.

The procedure of two-component beam setting
onto the axis of a linac may be realized in a follow-
ing way. First the beams are matched to each other
at the monitor BPM1 by means of the lens L1.
Then the centre of the two beams is matched to
the axis of a linac at the monitor BPM1 by moving
the axes of the first doublet (i.e., by simultaneous
positioning of both lenses L1 and L2). If relative
divergence of two beams reappears during the
second operation then both operations have to be
repeated. As soon as both beams coincide with the
linac axis at BPM1 both procedures have to be
transferred to the doublet D2 and the monitor
BPM2. All operations are repeated until complete
suppression of beam oscillations is achieved. As
shown by computer tests the overall number of
operations is rather moderate.

NUMBER OF CORRECTING ASSEMBLIES
REQUIRED IN THE LINAC

In order to find the required number of beam
correcting assemblies in the linac an investigation
of beam dynamics in the linac was carried out

with errors of doublets adjustment taken into
account. Rms values of alignment inaccuracies
were assumed 0,1 mm as was mentioned above.
The results of such a computer study for one,
three and six correcting assemblies are presented
in Figure 3. The linac was separated into 1, 3 and
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FIGURE 3 Probability of (y > ypa) VS Ymax curves for the
side-coupled linac with proton and H™ beams. y is the maximum
beam displacement in the linac. K is the number of beam
correcting assemblies.

6 equal parts correspondingly and coherent oscilla-
tions were suppressed at the beginning of each
part. A rather low efficiency of such a control is
readily seen from the figure. It was even noticed
that for some realizations beam matching to the
axis of a linac not only does not reduce the maxi-
mum amplitude of oscillations but induces its
growth. This may be explained in the following
way. Oscillations of the beam centre at each part
of a linac are excited by doublet shifts and tilts
distributed throughout the whole upstream part of
the linac. Disturbances induced by various parts
of a linac are superposed in arbitrary phase.
Therefore in some cases an artificial excitation of
new oscillations may prove to be more effective
than suppression of natural ones. Such a method
seems to be useful enough if the phase of new
oscillations provides that natural oscillations cancel
at the most critical points of a linac.

These ideas were realized in the new correction
procedure that may be called “interferentious”
and has been tested by computer. The procedure
was reduced to the following operations. First
beam position is measured by many monitors
distributed between the given control unit and the
next downstream correcting assembly. The number
of the period N is found where beam displacement
reaches its maximum value. Then controlling
dipole fields are to-be adjusted in such a way to
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provide reduction to half of the vector [}.] at the
Nth period.

The physical nature of interferentious correction
may be clearly seen from comparing of Figures 4a
and 4b which show beam trajectory envelopes
for a random realization of focusing channel
first without correction and then with “inter-
ferentious” control acting at only one point—at
the very beginning of the side-coupled linac.
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FIGURE 4 Beam trajectories for a certain realization of the
side-coupled linac before (Figure 4a) and after (Figure 4b)
“interferentious” correction. Transverse beam position at each
period is plotted only for the input of focusing lens. Solid lines
refer to protons and dashed lines to H™ ions.

The results of “interferentious” control obtained
by computer tests for many random realizations
are shown in Figure 5. The advantage of “inter-
ferentious” correction as compared to usual “zero”
control is rather obvious.
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FIGURE 5 Probability of (y > y,..) VS Ymax curves for the
side-coupled linac with protons and H™ ions. y is the maximum
beam displacement in the linac. 1) without any correction;
2) “zero” correction by means of three control assemblies;
3) “interferentious” correction by the same three control
assemblies.

The “interferentious” control applied as de-
scribed above has a substantial disadvantage:
beam position is to be measured along the whole
linac. It means for instance that the total number
of beam position monitors in the side-coupled
part of the linac’ must be as great as 112. Since the
amplitude of oscillations is distributed along a
linac in a rather gradual and smooth way the total
number of beam position monitors may be con-
siderably reduced. The efficiency of correction
seems to remain good enough with only a few
monitors left to measure each amplitude of
oscillation or at least some quantity proportional
to the amplitude. The beam displacement vector
on the transverse phase plane may be taken as
such a quantity. The vector may be measured by a
pair of beam position monitors separated by a
distance (e.g., by an accelerating tank). The beam
position control must provide reduction to half of
beam displacements at both monitors of the pair.
This method of control also was checked by
computer. The results were rather optimistic:
reduction of the number of beam position monitors
from 36 per correcting assembly (one monitor per
tank) to only one pair per 36 tanks caused growth
of maximum corrected beam displacement by only
10 to 20%.

Thus six correcting units (three units for each
transverse plane) give noticeable reduction of the
rms value of maximum beam displacement in the
side-coupled linac. The maximum value of dis-
placement exceeded by two beams with probability
say of 109 is reduced by the correction from
12 mm down to 4.5 mm i.e., 2.7 times.
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REDUCTION OF EFFECTIVE BEAM
RADIUS

Three different kinds of original errors are mainly
responsible for effectivet beam radius increase in an
ion linac. These are displacements and tilts of
quadrupole lens axes, rotation of lens median plane
about longitudinal axis and magnetic field gra-
dient dispersion around its prescribed value.

As shown above, the first of these is responsible
for coherent beam oscillations. The last two do not
cause any displacement of beam centre but are
responsible for beam radius increase. At the same
time beam emittance growth may be observed as
a result of lens random rotations about their axes.

As has been shown in,>* beam radius increases
along a linac more rapidly than may be expected
from previous theories. Simple expressions are
derived in®* for mean value (averaged over many
realizations) of radius increase R,/R,. These are

a) for random gradient dispersion:

|>a|

b _ [enAg + (eZnAg _ 1)1/2]1/2’ (14)

1 [A?E\? AG\?
Ag == —) (1 + ¥/ —
=5 (5 a3,
AG is gradient deviation from its prescribed value,
n is the number of magnetic system periods passed
by the beam and .4 -relation of maximum dimen-

sion of a beam over a period of focusing system to
its minimum value over the same period.

b) for small and random lens rotations:

=
<]

where

x|wl

(=]

P=[(1+ # T2 - I, (15)

A2§ 2
Al = (v W’) XZ

‘min

where

and x_z is rms value of lens rotation y.

T The term “effective’ is used for the minimum linac circular
aperture enveloping beam with both coherent and incoherent
oscillations taken into account.

Beam emittance increase E,/E, caused by ran-
dom lens rotations is determined as

E,
Eq

As can be shown from Egs. (14-16) beam blow-up
in a high energy linac (e.g., LAMPF or the linac?)
for any assumed tolerances may occur to much
greater radius than predicted by previous theories.
Since particle loss in such a linac must be less than
0.19 reduction of tolerances is required as well
as improvement of the correction system.

As has been mentioned in a previous section a
certain number of beam correcting assemblies
acting in accordance with a suitable control
procedure provide for a substantial decrease of
oscillation amplitude. Further suppression of co-
herent oscillations would be valuable only to-
gether with corresponding beam radius reduction.

Finally one more way of coherent oscillation
suppression will be pointed out. The doublet
shift distribution along the axis of the linac may be
represented as a Fourier expansion. Therefore
oscillations do not appear in any given realiza-
tion unless the Fourier expansion contains some
components that are multiples of the beam re-
sonant frequency. Thus if oscillations do appear it is
possible to go away from resonance by means of a
global change in magnetic fields throughout the
linac or over a considerable part thereof. This
type of control may be of practical importance
unless the field change is accompanied by a beam
radius increase. This problem seems to be soluble
more readily if, prior to the global field control
procedure, the beam radius reduction procedure
is made locally in few separate parts of the linac
by varying the gradients in any sequence of four
adjacent lenses.

= ", (16)
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