63 research outputs found

    Methyl 7,8-diacet­oxy-11-oxo-5-(2-oxo­pyrrolidin-1-yl)-7,9-epoxy­cyclo­penta­[4,5]pyrido[1,2-a]quinoline-10-carboxyl­ate sesquihydrate

    Get PDF
    The title compound, C26H28N2O9·1.5H2O, the product of an acid-catalysed Wagner–Meerwein skeletal rearrangement, crystallizes as a sesquihydrate with the O atom of one of the two independent water mol­ecules occupying a special position on a twofold axis. The organic mol­ecule comprises a fused penta­cyclic system containing two five-membered rings (cyclo­pentane and tetra­hydro­furan) and three six-membered rings (piperidinone, tetra­hydro­pyridine and benzene). The five-membered rings have the usual envelope conformations, and the central six-membered piperidinone and tetra­hydro­pyridine rings adopt boat and sofa conformations, respectively. In the crystal, there are three independent O—H⋯O hydrogen bonds, which link the organic mol­ecules and water mol­ecules into complex two-tier layers parallel to (001). The layers are further linked into a three-dimensional framework by attractive inter­molecular carbon­yl–carbonyl inter­actions

    8a-Methyl-5,6,8,8a,9,10-hexa­hydro-10,12a-epoxy­isoindolo[1,2-a]isoquinolinium iodide

    Get PDF
    The title compound, C17H18NO+·I−, is an adduct resulting from an intra­molecular Diels–Alder reaction of methallyl chloride with 3,4-dihydro-1-furylisoquinoline. The cation comprises a fused penta­cyclic system containing three five-membered rings (dihydro­pyrrole, dihydro­furan and tetra­hydro­furan) and two six-membered rings (tetra­hydro­pyridine and benzene). The five-membered rings have the usual envelope conformations, and the central six-membered tetra­hydro­pyridine ring adopts the unsymmetrical half-boat conformation. In the crystal, cations and iodide anions are bound by weak inter­molecular hydrogen-bonding inter­actions into a three-dimensional framework

    (6aS*,6bS*,11R*,11aR*)-6-(2-Furyl­methyl)-5,12-dioxo-5,6,6a,6b,7,11,11a,12-octa­hydro­furo[3′,2′:5,6]isoindolo[2,1-a]quinazoline-11-carb­oxy­lic acid

    Get PDF
    The title compound, C23H18N2O6, is the product of an intra­molecular thermal cyclo­addition within 1-malein-2-[(E)-2-(2-fur­yl)vin­yl]-4-oxo-3,4-dihydro­quinazoline. The mol­ecule comprises a previously unknown fused penta­cyclic system containing two five-membered rings (2-pyrrolidinone and furan) and three six-membered rings (benzene, 2,3-dihydro-4-pyrimidinone and dihydro­cyclo­hexa­ne). The central five-membered pyrrolidinone ring has the usual envelope conformation. The six-membered dihydro­pyrimidinone and dihydro­cyclo­hexane rings adopt a half-boat and a half-chair conformation, respectively. The dihedral angle between the planes of the terminal benzene and furan rings is 45.99 (7)°. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. Weak C—H⋯O hydrogen bonds consolidate further the crystal packing, which exhibits π–π inter­actions, with a short distance of 3.556 (3) Å between the centroids of benzene rings of neighbouring mol­ecules

    Dimethyl 11,13-dimethyl-16-[1,2-bis­(methoxy­carbon­yl)ethen­yl]-12-oxo-16,17-dioxa-18-aza­hexa­cyclo­[7.5.1.11,4.16,9.110,14.05,15]octa­deca-2,7-diene-2,3-dicarboxyl­ate

    Get PDF
    The title compound, C27H29NO11, is a product of the tandem ‘domino’ Diels–Alder reaction. The mol­ecule comprises a fused hexa­cyclic system containing four five-membered rings (two dihydro­furan and two tetra­hydro­furan) in the usual envelope conformations and two six-membered rings (tetra­hydro­pyridinone and piperidine) adopting slightly flattened boat and chair conformations, respectively. The dispositions of the carboxyl­ate substituents relative to each other are determined by both steric reasons and inter­molecular C—H⋯O hydrogen bonding and attractive anti­parallel C=O⋯C=O inter­actions [C⋯O = 2.995 (2) Å]

    Benzenesulfonamide Analogs : Synthesis, Anti-GBM Activity and Pharmacoprofiling

    Get PDF
    The tropomyosin receptor kinase A (TrkA) family of receptor tyrosine kinases (RTKs) emerge as a potential target for glioblastoma (GBM) treatment. Benzenesulfonamide analogs were identified as kinase inhibitors possessing promising anticancer properties. In the present work, four known and two novel benzenesulfonamide derivatives were synthesized, and their inhibitory activities in TrkA overexpressing cells, U87 and MEF cells were investigated. The cytotoxic effect of benzenesulfonamide derivatives and cisplatin was determined using trypan blue exclusion assays. The mode of interaction of benzenesulfonamides with TrkA was predicted by docking and structural analysis. ADMET profiling was also performed for all compounds to calculate the drug likeness property. Appropriate QSAR models were developed for studying structure–activity relationships. Compound 4-[2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfon-amide (AL106) and 4-[2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide (AL107) showed acceptable binding energies with the active sites for human nerve growth factor receptor, TrkA. Here, AL106 was identified as a potential anti-GBM compound, with an IC50 value of 58.6 µM with a less toxic effect in non-cancerous cells than the known chemotherapeutic agent, cisplatin. In silico analysis indicated that AL106 formed prominent stabilizing hydrophobic interactions with Tyr359, Ser371, Ile374 and charged interactions with Gln369 of TrkA. Furthermore, in silico analysis of all benzenesulfonamide derivatives revealed that AL106 has good pharmacokinetics properties, drug likeness and toxicity profiles, suggesting the compound may be suitable for clinical trial. Thus, benzenesulfonamide analog, AL106 could potentially induce GBM cell death through its interaction with TrkA and might be an attractive strategy for developing a drug targeted therapy to treat glioblastoma.Peer reviewe

    Synthesis, X-ray characterization and theoretical study of 3 a ,6:7,9 a-diepoxybenzo [de] isoquinoline derivatives: on the importance of F⋯O interactions

    Get PDF
    The synthesis, X-ray characterization and Hirshfeld surface analysis of a series of tetrahydrodiepoxybenzo[de]isoquinoline derivatives obtained by the tandem [4+2] cycloaddition between perfluorobut-2-yne dienophile (F3C–C≡C–CF3) and a row of N,N-bis(furan-2-ylmethyl)-4-Rbenzenesulfonamides (bis-dienes, R = Me, F, Cl, Br, I) are reported in this manuscript. The implementation of kinetic/thermodynamic control allowed to obtain both “pincer”- and “domino”-types adducts in good/moderate yields. In the solid state, most of the pincer adducts form self-assembled dimers (R = Me, Cl, Br, I) and, contrariwise, the domino adducts form 1D supramolecular chains, which are described in detail herein. Remarkably, in the self-assembled dimers, bifurcated halogen bonds involving one fluorine atom of the CF3 group and both O-atoms of sulfonamide are formed, which have been analyzed using DFT calculations, QTAIM and NCIplot computational tools.Fil: Grudova, Mariya V.. Peoples’ Friendship University; RusiaFil: Gil, Diego Mauricio. Universidad Nacional de Tucumán. Instituto de Biotecnología Farmacéutica y Alimentaria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Biotecnología Farmacéutica y Alimentaria; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Orgánica; ArgentinaFil: Khrustalev, Victor N.. Peoples’ Friendship University; Rusia. Institute of Organic Chemistry ND. Zelinsky; RusiaFil: Nikitina, Eugeniya V.. Peoples’ Friendship University; RusiaFil: Sinelshchikova, Anna A.. Academy of Sciences. Frumkin Institute of Physical Chemistry and Electrochemistry; RusiaFil: Grigoriev, Mikhail S.. Academy of Sciences. Frumkin Institute of Physical Chemistry and Electrochemistry; RusiaFil: Kletskov, Alexey V.. Peoples’ Friendship University; RusiaFil: Frontera, Antonio. Universidad de las Islas Baleares; EspañaFil: Zubkov, Fedor I.. Peoples’ Friendship University; Rusi

    Intramolecular sp2-sp3 disequalization of chemically identical sulfonamide nitrogen atoms: single crystal X-Ray diffraction characterization, hirshfeld surface analysis and DFT calculations of N-substituted hexahydro-1,3,5-triazines

    Get PDF
    In this manuscript, the synthesis and single crystal X-ray diffraction characterization of four N-substituted 1,3,5-triazinanes are reported along with a detailed analysis of the noncovalent interactions observed in the solid state architecture to these compounds, focusing on C–H···π and C–H···O H-bonding interactions. These noncovalent contacts have been characterized energetically by using DFT calculations and also by Hirshfeld surface analysis. In addition, the supramolecular assemblies have been characterized using the quantum theory of “atoms-in-molecules” (QTAIM) and molecular electrostatic potential (MEP) calculations. The XRD analysis revealed a never before observed feature of the crystalline structure of some molecules: symmetrically substituted 1,3,5-triazacyclohexanes possess two chemically identical sulfonamide nitrogen atoms in different sp2 and sp3-hybridizations.Fil: Kletskov, Alexey V.. University of Russia; RusiaFil: Gil, Diego Mauricio. Universidad Nacional de Tucumán. Instituto de Biotecnología Farmacéutica y Alimentaria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Biotecnología Farmacéutica y Alimentaria; ArgentinaFil: Frontera, Antonio. Universidad de las Islas Baleares; EspañaFil: Zaytsev, Vladimir P.. University of Russia; RusiaFil: Merkulova, Natalia L.. University of Russia; RusiaFil: Beltsova, Ksenia R.. University of Russia; RusiaFil: Sinelshchikova, Anna A.. University of Russia; RusiaFil: Grigoriev, Mikhail S.. University of Russia; RusiaFil: Grudova, Mariya V.. University of Russia; RusiaFil: Zubkov, Fedor I.. University of Russia; Rusi

    Structural versatility of the quasi-aromatic Möbius type zinc(II)-pseudohalide complexes : experimental and theoretical investigations

    Get PDF
    In this contribution we report for the first time fabrication, isolation, structural and theoretical characterization of the quasi-aromatic Mobius complexes [Zn(NCS)(2)L-I] (1), [Zn-2(mu(1,1)-N-3)(2)(L-I)(2)][ZnCl3(MeOH)](2)center dot 6MeOH (2) and [Zn(NCS)L-II](2)[Zn(NCS)(4)]center dot MeOH (3), constructed from 1,2-diphenyl-1,2-bis((phenyl(pyridin-2-yl)methylene)hydrazono)ethane (L-I) or benzilbis(acetylpyridin-2-yl)methylidenehydrazone (L-II), respectively, and ZnCl2 mixed with NH4NCS or NaN3. Structures 1-3 are dictated by both the bulkiness of the organic ligand and the nature of the inorganic counter ion. As evidenced from single crystal X-ray diffraction data species 1 has a neutral discrete heteroleptic mononuclear structure, whereas, complexes 2 and 3 exhibit a salt-like structure. Each structure contains a Zn-II atom chelated by one tetradentate twisted ligand L-I creating the unusual Mobius type topology. Theoretical investigations based on the EDDB method allowed us to determine that it constitutes the quasi-aromatic Mobius motif where a metal only induces the pi-delocalization solely within the ligand part: 2.44|e| in 3, 3.14|e| in 2 and 3.44|e| in 1. It is found, that the degree of quasi-aromatic pi-delocalization in the case of zinc species is significantly weaker (by similar to 50%) than the corresponding estimations for cadmium systems - it is associated with the Zn-N bonds being more polar than the related Cd-N connections. The ETS-NOCV showed, that the monomers in 1 are bonded primarily through London dispersion forces, whereas long-range electrostatic stabilization is crucial in 2 and 3. A number of non-covalent interactions are additionally identified in the lattices of 1-3

    (4 R

    Get PDF
    corecore