476 research outputs found

    The Interstellar Rubidium Isotope Ratio toward Rho Ophiuchi A

    Full text link
    The isotope ratio, 85Rb/87Rb, places constraints on models of the nucleosynthesis of heavy elements, but there is no precise determination of the ratio for material beyond the Solar System. We report the first measurement of the interstellar Rb isotope ratio. Our measurement of the Rb I line at 7800 A for the diffuse gas toward rho Oph A yields a value of 1.21 +/- 0.30 (1-sigma) that differs significantly from the meteoritic value of 2.59. The Rb/K elemental abundance ratio for the cloud also is lower than that seen in meteorites. Comparison of the 85Rb/K and 87Rb/K ratios with meteoritic values indicates that the interstellar 85Rb abundance in this direction is lower than the Solar System abundance. We attribute the lower abundance to a reduced contribution from the r-process. Interstellar abundances for Kr, Cd, and Sn are consistent with much less r-process synthesis for the solar neighborhood compared to the amount inferred for the Solar System.Comment: 12 pages with 2 figures and 1 table; will appear in ApJ Letter

    Gender dimorphism and age of onset in malignant peripheral nerve sheath tumor preclinical models and human patients.

    Get PDF
    BackgroundGender-based differences in disease onset in murine models of malignant peripheral nerve sheath tumor (MPNST) and in patients with Neurofibromatosis type-1-(NF-1)-associated or spontaneous MPNST has not been well studied.MethodsForty-three mGFAP-Cre+;Ptenloxp/+;LSL-K-rasG12D/+ mice were observed for tumor development and evaluated for gender disparity in age of MPNST onset. Patient data from the prospectively collected UCLA sarcoma database (1974-2011, n = 113 MPNST patients) and 39 published studies on MPNST patients (n = 916) were analyzed for age of onset differences between sexes and between NF-1 and spontaneous MPNST patients.ResultsOur murine model showed gender-based differences in MPNST onset, with males developing MPNST significantly earlier than females (142 vs. 162 days, p = 0.015). In the UCLA patient population, males also developed MPNST earlier than females (median age 35 vs. 39.5 years, p = 0.048). Patients with NF-1-associated MPNST had significantly earlier age of onset compared to spontaneous MPNST (median age 33 vs. 39 years, p = 0.007). However, expanded analysis of 916 published MPNST cases revealed no significant age difference in MPNST onset between males and females. Similar to the UCLA dataset, patients with NF-1 developed MPNST at a significantly younger age than spontaneous MPNST patients (p < 0.0001, median age 28 vs. 41 years) and this disparity was maintained across North American, European, and Asian populations.ConclusionsAlthough our preclinical model and single-institution patient cohort show gender dimorphism in MPNST onset, no significant gender disparity was detected in the larger MPNST patient meta-dataset. NF-1 patients develop MPNST 13 years earlier than patients with spontaneous MPNST, with little geographical variance

    Physical Conditions in Shocked Interstellar Gas Interacting with the Supernova Remnant IC 443

    Full text link
    We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on a comprehensive examination of high-resolution far-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope of two stars behind IC 443. One of our targets (HD 43582) probes gas along the entire line of sight through the supernova remnant, while the other (HD 254755) samples material located ahead of the primary supernova shock front. We identify low velocity quiescent gas in both directions and find that the densities and temperatures in these components are typical of diffuse atomic and molecular clouds. Numerous high velocity components are observed in the absorption profiles of neutral and singly-ionized atomic species toward HD 43582. These components exhibit a combination of greatly enhanced thermal pressures and significantly reduced dust-grain depletions. We interpret this material as cooling gas in a recombination zone far downstream from shocks driven into neutral gas clumps. The pressures derived for a group of ionized gas components at high positive velocity toward HD 43582 are lower than those of the other shocked components, pointing to pressure inhomogeneities across the remnant. A strong very high velocity component near -620 km/s is seen in the absorption profiles of highly-ionized species toward HD 43582. The velocity of this material is consistent with the range of shock velocities implied by observations of soft thermal X-ray emission from IC 443. Moderately high-velocity gas toward HD 254755 may represent shocked material from a separate foreground supernova remnant.Comment: 88 pages, 27 figures, accepted for publication in Ap

    A far UV study of interstellar gas towards HD34078: high excitation H2 and small scale structure - Based on observations performed by the FUSE mission and at the CFHT telescope

    Full text link
    To investigate the presence of small scale structure in the spatial distribution of H2 molecules we have undertaken repeated FUSE UV observations of the runaway O9.5V star, HD34078. In this paper we present five spectra obtained between January 2000 and October 2002. These observations reveal an unexpectedly large amount of highly excited H2. Column densities for H2 levels from (v = 0, J = 0) up to (v = 0, J = 11) and for several v = 1 and v = 2 levels are determined. These results are interpreted in the frame of a model involving essentially two components: i) a foreground cloud (unaffected by HD34078) responsible for the H2 (J = 0, 1), CI, CH, CH+ and CO absorptions; ii) a dense layer of gas (n = 10E4 cm-3) close to the O star and strongly illuminated by its UV flux which accounts for the presence of highly excited H2. Our model successfully reproduces the H2 excitation, the CI fine-structure level populations as well as the CH, CH+ and CO column densities. We also examine the time variability of H2 absorption lines tracing each of these two components. From the stability of the J = 0, 1 and 2 damped H2 profiles we infer a 3 sigma upper limit on column density variations Delta(N(H2))/N(H2) of 5% over scales ranging from 5 to 50 AU. This result clearly rules out any pronounced ubiquitous small scale "density" structure of the kind apparently seen in HI. The lines from highly excited gas are also quite stable (equivalent to Delta(N)/N <= 30%) indicating i) that the ambient gas through which HD34078 is moving is relatively uniform and ii) that the gas flow along the shocked layer is not subject to marked instabilitie

    Magic numbers in exotic nuclei and spin-isospin properties of {\it NN} interaction

    Get PDF
    The magic numbers in exotic nuclei are discussed, and their novel origin is shown to be the spin-isospin dependent part of the nucleon-nucleon interaction in nuclei. The importance and robustness of this mechanism is shown in terms of meson exchange, G-matrix and QCD theories. In neutron-rich exotic nuclei, magic numbers such as N = 8, 20, etc. can disappear, while N = 6, 16, etc. arise, affecting the structure of lightest exotic nuclei to nucleosynthesis of heavy elements.Comment: 4 pages, 3 figures, revte

    CO emission and variable CH and CH+ absorption towards HD34078: evidence for a nascent bow shock ?

    Full text link
    The runaway star HD34078, initially selected to investigate small scale structure in a foreground diffuse cloud has been shown to be surrounded by highly excited H2. We first search for an association between the foreground cloud and HD34078. Second, we extend previous investigations of temporal absorption line variations (CH, CH+, H2) in order to better characterize them. We have mapped the CO(2-1) emission at 12 arcsec resolution around HD34078's position, using the 30 m IRAM antenna. The follow-up of CH and CH+ absorption lines has been extended over 5 more years. In parallel, CH absorption towards the reddened star Zeta Per have been monitored to check the homogeneity of our measurements. Three more FUSE spectra have been obtained to search for N(H2) variations. CO observations show a pronounced maximum near HD34078's position, clearly indicating that the star and diffuse cloud are associated. The optical spectra confirm the reality of strong, rapid and correlated CH and CH+ fluctuations. On the other hand, N(H2, J=0) has varied by less than 5 % over 4 years. We also discard N(CH) variations towards Zeta Per at scales less than 20 AU. Observational constraints from this work and from 24 micron dust emission appear to be consistent with H2 excitation but inconsistent with steady-state bow shock models and rather suggest that the shell of compressed gas surrounding HD34078, is seen at an early stage of the interaction. The CH and CH+ time variations as well as their large abundances are likely due to chemical structure in the shocked gas layer located at the stellar wind/ambient cloud interface. Finally, the lack of variations for both N(H2, J=0) towards HD34078 and N(CH) towards Zeta Per suggests that quiescent molecular gas is not subject to pronounced small-scale structure.Comment: 19 pages, 15 figures, accepted for publication in A&

    FUSE Observations of Molecular Hydrogen in Translucent Interstellar Clouds: The Line of Sight Toward HD 73882

    Get PDF
    We report the results of initial FUSE observations of molecular hydrogen (H2) in translucent clouds. These clouds have greater optical depth than any of the diffuse clouds previously observed for far-UV H2 absorption, and provide new insights into the physics and chemistry of such regions. Our initial results involve observations of HD 73882, a well-studied southern hemisphere star lying behind substantial interstellar material (E(B-V) = 0.72; A_V = 2.44). We find a total H2 column density, N(H2) = 1.2 x 10^{21} cm^{-2}, about three times larger than the values for diffuse clouds previously measured in the far-UV. The gas kinetic temperature indicated by the ratio N(J=1)/N(J=0) is 58 +/- 10 K. With the aid of ground-based data to calculate an appropriate multi-component curve of growth, we have determined column densities for all rotational levels up to J = 7. The J >= 2 states can be reasonably fitted with a rotational excitation temperature of 307 +/- 23 K. Both the kinetic and rotational temperatures are similar to those found in previous investigations of diffuse clouds. The ratios of carbonaceous molecules to hydrogen molecules are also similar to ratios in diffuse clouds, suggesting a similar chemistry for this line of sight.Comment: 7 pages, 3 figures, to appear in ApJ Letters (FUSE first-results issue
    corecore