4 research outputs found

    Genomic profiling of cortical neurons following exposure to β-amyloid

    Get PDF
    In vitro and in vivo studies have shown that beta-amyloid peptide induces neuronal cell death. To explore the molecular basis underlying beta-amyloid-induced toxicity, we analyzed gene expression profiles of cultured rat cortical neurons treated for 24 and 48 h with synthetic beta-amyloid peptide. From the 8740 genes interrogated by oligonucleotide microarray analysis, 241 genes were found to be differentially expressed and segregated into distinct clusters. Functional clustering based on gene ontologies showed coordinated expression of genes with common biological functions and metabolic pathways. The comparison with genes differentially expressed in cerebellar granule neurons following serum and potassium deprivation indicates the existence of common regulatory mechanisms underlying neuronal cell death. Our results offer a genomic view of the changes that accompany beta-amyloid-induced neurodegeneration

    Analysis of cCx39 expression pattern during chick development

    No full text
    The present study reports the expression pattern of connexin39 (cCx39) in chick embryos at different stages of central nervous system development. We examined the expression between HH17 and HH40 developmental stages of chicken embryos by in situ hybridization (ISH) technique. Connexin39 was first expressed at HH17. It stained neuroepithelial cells in the optic (OV) and telencephalic (TEL) vesicles, plus in the superficial mesenchyme of the two rostral branchial arches (maxilar and mandibular). These cells probably originated from the neural crest. This expression pattern changed drastically between stages HH17 and HH23, while it showed relatively little modifications from HH23 to HH29. At these times, connexin39 was expressed in three regions: the telencephalic vesicle, the diencephalon and the isthmus. At later stages, HH35 and HH40, connexin39 was mainly expressed in the ventricular epithelium and three cell layers of the stratum griseum and fibrosum superficialis (SGFS) in the optic tectum, as well as in granular and nuclear cells in the cerebellum. In conclusion, the expression pattern of connexin39 in embryonic nervous system is dynamic. This pattern is different from, and in some aspects complementary to, those showed by other connexins during brain development.Peer reviewe
    corecore