6,492 research outputs found
Space-Enhanced Solar Power for Equatorial Regions
This paper examines the concept of solar mirrors in a Earth orbit to provide solar farms with additional solar power
during the hours of darkness. The design of the orbit is key for the purposes of the mission: the mirror needs continuous
access to the Sun and the solar farm simultaneously. Therefore, orbits with high-eccentricity will be considered to
increase the visibility time. Also, since the most convenient locations for solar power farms are about the equator,
a suitable orbit should have a low inclination. This issue can be addressed through the concept of anti-heliotropic
orbits that exploits mainly solar radiation pressure perturbations to generate highly-eccentric equatorial orbits able to
maintain the orientation with respect to the Sun. The considered configuration consists in two space mirrors in a flower
constellation rotating with the Earth to deliver a repeat ground track
Headache disorders as risk factors for sleep disturbances in school aged children.
Several epidemiological studies have shown the presence of comorbidity between various types of sleep disorders and different headache subtypes. Migraine without aura is a sensitive risk factor for disorders of initiating and maintaining sleep (odds ratio (OR) 8.2500), and chronic tension-type headache for sleep breathing disorders (OR 15.231), but headache disorder is a cumulative risk factor for disorders of excessive somnolence (OR 15.061). This result has not been reported in the clinical literature. © Springer-Verlag Italia 2005
Transfer of a quantum state from a photonic qubit to a gate-defined quantum dot
Interconnecting well-functioning, scalable stationary qubits and photonic
qubits could substantially advance quantum communication applications and serve
to link future quantum processors. Here, we present two protocols for
transferring the state of a photonic qubit to a single-spin and to a two-spin
qubit hosted in gate-defined quantum dots (GDQD). Both protocols are based on
using a localized exciton as intermediary between the photonic and the spin
qubit. We use effective Hamiltonian models to describe the hybrid systems
formed by the the exciton and the GDQDs and apply simple but realistic noise
models to analyze the viability of the proposed protocols. Using realistic
parameters, we find that the protocols can be completed with a success
probability ranging between 85-97%
Space-Enhanced Solar Power for Equatorial Regions
This paper examines the concept of solar mirrors in a Earth orbit to provide solar farms with additional solar power
during the hours of darkness. The design of the orbit is key for the purposes of the mission: the mirror needs continuous
access to the Sun and the solar farm simultaneously. Therefore, orbits with high-eccentricity will be considered to
increase the visibility time. Also, since the most convenient locations for solar power farms are about the equator,
a suitable orbit should have a low inclination. This issue can be addressed through the concept of anti-heliotropic
orbits that exploits mainly solar radiation pressure perturbations to generate highly-eccentric equatorial orbits able to
maintain the orientation with respect to the Sun. The considered configuration consists in two space mirrors in a flower
constellation rotating with the Earth to deliver a repeat ground track
Local seismic response studies in the north-western portion of the August 24th, 2016 Mw 6.0 earthquake affected area. The case of Visso village (Central Apennines).
In this work, we investigate the possible causes of the differential damaging observed in Visso village (Central Apennines, about 28 km north from the August 24th, 2016 Mw 6.0 earthquake epicenter). Following insights from the available geological cartography at 1:10.000 scale, a preliminary geophysical survey has been performed in the damaged area in order to constrain geometries and extent of the subsoil lithotypes. Then, these results have been used to retrieve a Vs profile close to the most heavily damaged buildings. This latter has been used as input for a numerical analysis aimed at deriving the motion at the ground level in the study area. In particular, a linear equivalent simulation has been performed by means of EERA code and the waveform has been obtained convolving the time history recorded during the August 24th, 2016 mainshock at Spoleto Monteluco (SPM) site. Our preliminary results indicate a possible correlation of damaging to the thickness and shape of the geological units. Nevertheless, further analyses are necessary to highlight any 2D basin and / non- linear soil behaviour effects in order to compare them to the intrinsic buildings vulnerability, according to the EMS98 guidelines
Winsor & Newton original handbooks: asurface-enhanced Raman scattering (SERS) andRaman spectral database of dyes from modernwatercolor pigments
Background
Winsor & Newton Ltd. has been one of the main fine art products providers since its establishment in 1832, being responsible for the manufacture of a wide assortment of materials ranging from oils and pigments to brushes and papers. All the items produced over the years have been indexed in a comprehensive historical archive. Original Winsor & Newton handbooks are a powerful resource which can offer insight into the world of artists’ materials, and knowledge of artists’ choices through the identification of substances employed to obtain particular colors. Scientific analyses of various kinds have been carried out on Winsor & Newton art materials over the years; however, a detailed study of the organic dyes contained in the watercolors manufactured by the company has never been performed thus far to our knowledge. Results
In the present study, we examined a number of color washes on drawing paper from two historical Winsor & Newton catalogues dating to the 19th and 20th century. An appropriate database was thus built, including surface-enhanced Raman scattering (SERS) and Raman spectra of organic colorants from a wide variety of shades. While the selection of colors offered by the company in the 19th century mostly included lakes prepared from plant and insect dyes, i.e. madder and cochineal, some tints based on synthetic dyes were also found in the 20th century handbook. Conclusions
The present article sheds new light on the chemical composition of a number of original Winsor & Newton color washes in terms of organic colorants contained in each shade. A special attention was dedicated to the analysis of those colors for which the formulation was ambiguous or not specified by the manufacturers, such as dragons’ blood and most of the alizarin-based pigments. In addition, we were able to correct erroneous indications provided by Winsor & Newton on the composition of some tints, as in the case of violet carmine, and study how the formulation of certain pigments has been modified over the centuries
From a discrete model of chemotaxis with volume-filling to a generalized Patlak–Keller–Segel model
Funding: The authors gratefully acknowledge support of the project PICS-CNRS no. 07688. F.B. acknowledges funding from the European Research Council (ERC, grant agreement No. 740623) and the Université Franco-Italienne.We present a discrete model of chemotaxis whereby cells responding to a chemoattractant are seen as individual agents whose movement is described through a set of rules that result in a biased random walk. In order to take into account possible alterations in cellular motility observed at high cell densities (i.e. volume-filling), we let the probabilities of cell movement be modulated by a decaying function of the cell density. We formally show that a general form of the celebrated Patlak–Keller–Segel (PKS) model of chemotaxis can be formally derived as the appropriate continuum limit of this discrete model. The family of steady-state solutions of such a generalized PKS model are characterized and the conditions for the emergence of spatial patterns are studied via linear stability analysis. Moreover, we carry out a systematic quantitative comparison between numerical simulations of the discrete model and numerical solutions of the corresponding PKS model, both in one and in two spatial dimensions. The results obtained indicate that there is excellent quantitative agreement between the spatial patterns produced by the two models. Finally, we numerically show that the outcomes of the two models faithfully replicate those of the classical PKS model in a suitable asymptotic regime.PostprintPeer reviewe
- …