5,543 research outputs found

    Towards an Improved Test of the Standard Model's Most Precise Prediction

    Full text link
    The electron and positron magnetic moments are the most precise prediction of the standard model of particle physics. The most accurate measurement of a property of an elementary particle has been made to test this result. A new experimental method is now being employed in an attempt to improve the measurement accuracy by an order of magnitude. Positrons from a "student source" now suffice for the experiment. Progress toward a new measurement is summarized

    Gaseous 3^3He Nuclear Magnetic Resonance Probe for Cryogenic Environments

    Full text link
    Normal nuclear magnetic resonance (NMR) probes cannot be used to make high frequency resolution measurements in a cryogenic environment because they lose their frequency resolution when the liquid sample in the probe freezes. A gaseous 3^3He NMR probe, designed and constructed to work naturally in such cryogenic environments, is demonstrated at 4.2 K and 5.3 Tesla to have a frequency resolution better than 0.4 part per billion. As a demonstration of its usefulness, the cryogenic probe is used to shim a superconducting solenoid with a cryogenic interior to produce a magnetic field with a high spatial homogeneity, and to measure the magnetic field stability.Comment: 9 pages, 11 figure

    Tracking Aqueous Proton Transfer by Two-Dimensional Infrared Spectroscopy and ab Initio Molecular Dynamics Simulations.

    Get PDF
    Proton transfer in water is ubiquitous and a critical elementary event that, via proton hopping between water molecules, enables protons to diffuse much faster than other ions. The problem of the anomalous nature of proton transport in water was first identified by Grotthuss over 200 years ago. In spite of a vast amount of modern research effort, there are still many unanswered questions about proton transport in water. An experimental determination of the proton hopping time has remained elusive due to its ultrafast nature and the lack of direct experimental observables. Here, we use two-dimensional infrared spectroscopy to extract the chemical exchange rates between hydronium and water in acid solutions using a vibrational probe, methyl thiocyanate. Ab initio molecular dynamics (AIMD) simulations demonstrate that the chemical exchange is dominated by proton hopping. The observed experimental and simulated acid concentration dependence then allow us to extrapolate the measured single step proton hopping time to the dilute limit, which, within error, gives the same value as inferred from measurements of the proton mobility and NMR line width analysis. In addition to obtaining the proton hopping time in the dilute limit from direct measurements and AIMD simulations, the results indicate that proton hopping in dilute acid solutions is induced by the concerted multi-water molecule hydrogen bond rearrangement that occurs in pure water. This proposition on the dynamics that drive proton hopping is confirmed by a combination of experimental results from the literature

    Absolute differential positronium-formation cross sections

    Get PDF
    The first absolute experimental determinations of the differential cross-sections for the formation of ground-state positronium are presented for He, Ar, H2 and CO2 near 0○. Results are compared with available theories. The ratio of the differential and integrated cross-sections for the targets exposes the higher propensity for forward-emission of positronium formed from He and H2

    Phylogenetic analysis of Cryptosporidium isolates from captive reptiles using 18S rDNA sequence data and random amplified polymorphic DNA analys

    Get PDF
    Sequence alignment of a polymerase chain reaction-amplified 713-base pair region of the Cryptosporidium 18S rDNA gene was carried out on 15 captive reptile isolates from different geographic locations and compared to both Cryptosporidium parvum and Cryptosporidium muris isolates. Random amplified polymorphic DNA (RAPD) analysis was also performed on a smaller number of these samples. The data generated by both techniques were significantly correlated (P < 0.002), providing additional evidence to support the clonal population structure hypothesis for Cryptosporidium. Phylogenetic analysis of both 18S sequence information and RAPD analysis grouped the majority of reptile isolates together into 1 main group attributed to Cryptosporidium serpentis, which was genetically distinct but closely related to C. muris. A second genotype exhibited by 1 reptile isolate (S6) appeared to be intermediate between C. serpentis and C. muris but grouped most closely with C. muris, as it exhibited 99.15% similarity with C. muris and only 97.13% similarity with C. serpentis. The third genotype identified in 2 reptile isolates was a previously characterized 'mouse' genotype that grouped closely with bovine and human C. parvum isolates

    Molecular characterization and assessment of zoonotic transmission of Cryptosporidium from dairy cattle in West Bengal, India

    Get PDF
    Few studies in the past have examined the genetic diversity and zoonotic potential of Cryptosporidium in dairy cattle in India. To assess the importance of these animals as a source of human Cryptosporidium infections, fecal samples from 180 calves, heifers and adults and 51 farm workers on two dairy farms in West Bengal, India were genotyped by PCR-RFLP analysis of the 18S rRNA gene of Cryptosporidium followed by DNA sequencing of the PCR products. Phylogenetic analysis was carried out on the DNA sequences obtained in the study and those available in GenBank. The overall prevalence of Cryptosporidium in cattle was 11.7% though the infection was more prevalent in younger calves than in adult cattle. The occurrence of Cryptosporidium parvum, Cryptosporidium bovis, Cryptosporidium ryanae and Cryptosporidium andersoni in cattle followed an age-related pattern. A Cryptosporidium suis-like genotype was also detected in a calf. Farm workers were infected with Cryptosporidium hominis, C. parvum and a novel C. bovis genotype. These findings clearly suggest that there is a potential risk of zoonotic transmission of Cryptosporidium infections between cattle and humans on dairy farms in India

    Magnetic field-free measurements of the total cross section for positrons scattering from helium and krypton

    Get PDF
    An electrostatic beam has been used to perform scattering measurements with an angular-discrimination of 2\lesssim 2^\circ . The total cross sections of positrons scattering from helium and krypton have been determined in the energy range (10–300) eV. This work was initially stimulated by the investigations of Nagumo et al (2011 J. Phys. Soc. Japan 80 064301), the first positron field-free measurements performed with a similarly high resolution, which found significant discrepancies at low energies with most other experiments and theories. The present results show good agreement with theories and several other measurements, even those characterized by a much poorer angular discrimination, implying a small contribution from particles elastically scattered at forward angles, as theoretically predicted for He but not for Kr

    High-Resolution Measurements of e+ + H2O Total Cross Section

    Get PDF
    Using a purely positron beam, the total cross section of positrons scattering from H2O has been measured for the first time with a high angular discrimination (≃1°) against forward scattered projectiles. Results are presented in the energy range (10-300) eV. Significant deviations from previous measurements are found which are, if ascribed entirely to the angular acceptances of various experimental systems, in quantitative accord with ab initio theoretical predictions of the differential elastic scattering cross section

    Vibrational energy relaxation in proteins

    Full text link
    An overview of theories related to vibrational energy relaxation (VER) in proteins is presented. VER of a selected mode in cytochrome c is studied using two theoretical approaches. One is the equilibrium simulation approach with quantum correction factors, and the other is the reduced model approach which describes the protein as an ensemble of normal modes interacting through nonlinear coupling elements. Both methods result in estimates of the VER time (sub ps) for a CD stretching mode in the protein at room temperature. The theoretical predictions are in accord with the experimental data of Romesberg's group. A perspective on future directions for the detailed study of time scales and mechanisms for VER in proteins is presented.Comment: 12 pages, 4 figures, accepted for publication in PNA
    corecore