47 research outputs found
Streamlining Digital Modeling and Building Information Modelling (BIM) Uses for the Oil and Gas Projects
The oil and gas industry is a technology-driven industry. Over the last two decades, it has heavily made use of digital modeling and associated technologies (DMAT) to enhance its commercial capability. Meanwhile, the Building Information Modelling (BIM) has grown at an exponential rate in the built environment sector. It is not only a digital representation of physical and functional characteristics of a facility, but it has also made an impact on the management processes of building project lifecycle. It is apparent that there are many similarities between BIM and DMAT usability in the aspect of physical modeling and functionality. The aim of this study is to streamline the usage of both DMAT and BIM whilst discovering valuable practices for performance improvement in the oil and gas projects. To achieve this, 28 BIM guidelines, 83 DMAT academic publications and 101 DMAT vendor case studies were selected for review. The findings uncover (a) 38 BIM uses; (b) 32 DMAT uses and; (c) 36 both DMAT and BIM uses. The synergy between DMAT and BIM uses would render insightful references into managing efficient oil and gas’s projects. It also helps project stakeholders to recognise future investment or potential development areas of BIM and DMAT uses in their projects
Spectroscopy and Cyclic Voltammetry Properties of SPEEK/CuO Nanocomposite at Screen-Printed Gold Electrodes
A successful electrochemical study of copper oxide nanoparticles (CuO NPs), sulfonated poly (ether ether ketone) polymer (SPEEK), and sulfonated polyether ether ketone-copper oxide (SPEEK/CuO) nanocomposite on bare gold electrodes was conducted. The synthesized CuO NPs and SPEEK/CuO nanocomposite were characterized using X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and electron dispersive spectroscopy (EDS). The XRD showed that the diameter of the CuO NPs synthesized was 20.44 nm. The cyclic voltammetry properties of bare screen-print gold, SPEEK and SPEEK/CuO-modified electrodes were assessed in a 5 mM K3[Fe(CN)6] solution. The electrochemical performance of the fabricated electrodes investigated revealed that CuO NPs improved the electrochemical properties of SPEEK, and the quantum size effect indicated good adsorption by the SPEEK/CuO nanocomposite compared to the SPEEK polymer and the CuO NPs alone. Moreover, the Tafel values indicated the enhanced electrochemical performance of the other electrodes as compared with the SPEEK/CuO nanocomposite. This, therefore, confirmed the successful incorporation of CuO NPs into the SPEEK polymer, as the increased surface area and the interactions between the polymer matrix and CuO fillers improved the electrochemical performance of the electrode
Learning Eco-Innovation from Nature: Towards Identification of Solution Principles Without Secondary Eco-Problems
Environmentally-friendly implementation of new technologies and eco-innovative solutions often faces additional secondary ecological problems. On the other hand, existing biological systems show a lesser environmental impact as compared to the human-made products or technologies. The paper defines a research agenda for identification of underlying eco-inventive principles used in the natural systems created through evolution. Finally, the paper proposes a comprehensive method for capturing eco-innovation principles in biological systems in addition and complementary to the existing biomimetic methods and TRIZ methodology and illustrates it with an example