25 research outputs found

    The effect of dietary fat intake on hepatic gene expression in LG/J AND SM/J mice

    Get PDF
    Background The liver plays a major role in regulating metabolic homeostasis and is vital for nutrient metabolism. Identifying the genetic factors regulating these processes could lead to a greater understanding of how liver function responds to a high-fat diet and how that response may influence susceptibilities to obesity and metabolic syndrome. In this study we examine differences in hepatic gene expression between the LG/J and SM/J inbred mouse strains and how gene expression in these strains is affected by high-fat diet. LG/J and SM/J are known to differ in their responses to a high-fat diet for a variety of obesity- and diabetes-related traits, with the SM/J strain exhibiting a stronger phenotypic response to diet. Results Dietary intake had a significant effect on gene expression in both inbred lines. Genes up-regulated by a high-fat diet were involved in biological processes such as lipid and carbohydrate metabolism; protein and amino acid metabolic processes were down regulated on a high-fat diet. A total of 259 unique transcripts exhibited a significant diet-by-strain interaction. These genes tended to be associated with immune function. In addition, genes involved in biochemical processes related to non-alcoholic fatty liver disease (NAFLD) manifested different responses to diet between the two strains. For most of these genes, SM/J had a stronger response to the high-fat diet than LG/J. Conclusions These data show that dietary fat impacts gene expression levels in SM/J relative to LG/J, with SM/J exhibiting a stronger response. This supports previous data showing that SM/J has a stronger phenotypic response to high-fat diet. Based upon these findings, we suggest that SM/J and its cross with the LG/J strain provide a good model for examining non-alcoholic fatty liver disease and its role in metabolic syndrome

    Potassium channels in C. elegans

    Get PDF
    Ion channels are the "transistors" (electronic switches) of the brain that generate and propagate electrical signals in the aqueous environment of the brain and nervous system. Potassium channels are particularly important because, not only do they shape dynamic electrical signaling, they also set the resting potentials of almost all animal cells. Without them, animal life as we know it would not exist, much less higher brain function. Until the completion of the C. elegans genome sequencing project the size and diversity of the potassium channel extended gene family was not fully appreciated. Sequence data eventually revealed a total of approximately 70 genes encoding potassium channels out of the more than 19,000 genes in the genome. This seemed to be an unexpectedly high number of genes encoding potassium channels for an animal with a small nervous system of only 302 neurons. However, it became clear that potassium channels are expressed in all cell types, not only neurons, and that many cells express a complex palette of multiple potassium channels. All types of potassium channels found in C. elegans are conserved in mammals. Clearly, C. elegans is "simple" only in having a limited number of cells dedicated to each organ system; it is certainly not simple with respect to its biochemistry and cell physiology

    Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rhesus macaques are the most widely utilized nonhuman primate model in biomedical research. Previous efforts have validated fewer than 900 single nucleotide polymorphisms (SNPs) in this species, which limits opportunities for genetic studies related to health and disease. Extensive information about SNPs and other genetic variation in rhesus macaques would facilitate valuable genetic analyses, as well as provide markers for genome-wide linkage analysis and the genetic management of captive breeding colonies.</p> <p>Results</p> <p>We used the available rhesus macaque draft genome sequence, new sequence data from unrelated individuals and existing published sequence data to create a genome-wide SNP resource for Indian-origin rhesus monkeys. The original reference animal and two additional Indian-origin individuals were resequenced to low coverage using SOLiDâ„¢ sequencing. We then used three strategies to validate SNPs: comparison of potential SNPs found in the same individual using two different sequencing chemistries, and comparison of potential SNPs in different individuals identified with either the same or different sequencing chemistries. Our approach validated approximately 3 million SNPs distributed across the genome. Preliminary analysis of SNP annotations suggests that a substantial number of these macaque SNPs may have functional effects. More than 700 non-synonymous SNPs were scored by Polyphen-2 as either possibly or probably damaging to protein function and these variants now constitute potential models for studying functional genetic variation relevant to human physiology and disease.</p> <p>Conclusions</p> <p>Resequencing of a small number of animals identified greater than 3 million SNPs. This provides a significant new information resource for rhesus macaques, an important research animal. The data also suggests that overall genetic variation is high in this species. We identified many potentially damaging non-synonymous coding SNPs, providing new opportunities to identify rhesus models for human disease.</p

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P &lt; 0.001) and PARP inhibitor therapy (P &lt; 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P &lt; 0.018) and WEE1 inhibitor (P &lt; 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P &lt; 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy

    P-Cable high-resolution seismic

    No full text
    Quantitative trait locus (QTL) studies of a skeletal trait or a few related skeletal components are becoming commonplace, but as yet there has been no investigation of pleiotropic patterns throughout the skeleton. We present a comprehensive survey of pleiotropic patterns affecting mouse skeletal morphology in an intercross of LG/J and SM/J inbred strains (N = 1040), using QTL analysis on 70 skeletal traits. We identify 798 single-trait QTL, coalescing to 105 loci that affect on average 7–8 traits each. The number of traits affected per locus ranges from only 1 trait to 30 traits. Individual traits average 11 QTL each, ranging from 4 to 20. Skeletal traits are affected by many, small-effect loci. Significant additive genotypic values average 0.23 standard deviation (SD) units. Fifty percent of loci show codominance with heterozygotes having intermediate phenotypic values. When dominance does occur, the LG/J allele tends to be dominant to the SM/J allele (30% vs. 8%). Over- and underdominance are relatively rare (12%). Approximately one-fifth of QTL are sex specific, including many for pelvic traits. Evaluating the pleiotropic relationships of skeletal traits is important in understanding the role of genetic variation in the growth and development of the skeleton

    Calpain-10 is a component of the obesity-related quantitative trait locus Adip1

    No full text
    We previously mapped Adip1, an obesity quantitative trait locus (QTL), to the central portion of murine chromosome 1 containing the calpain-10 (Capn10) gene. Human studies have associated calpain-10 (CAPN10) variants with type 2 diabetes and various metabolic traits. We performed a quantitative hybrid complementation test (QHCT) to determine whether differences attributed to Adip1 are the result of variant Capn10 alleles in LG/J and SM/J mice. We crossed LG/J and SM/J to wild-type (C57BL/6J) and Capn10 knockout (Capn10−/−) mice to form four F1 hybrid groups: LG/J by wild-type, LG/J by Capn10−/−, SM/J by wild-type, and SM/J by Capn10−/−. We performed a two-way ANOVA with the experimental strain, tester strain, and their interaction as the factors. Significant interaction indicates a quantitative failure to complement. We found failure to complement for fat, organ, and body weights, and leptin, female free fatty acid, and triglyceride levels. Capn10−/− resulted in heavier weights and higher serum levels in LG/J crosses but not in SM/J crosses. For glucose tolerance and insulin response tests, the Capn10−/− allele resulted in lower glucose levels in crosses with SM/J but had no effect in the LG/J crosses. Differences between the LG/J and SM/J Capn10 alleles are the likely source of some of the QTL effects mapped to Adip1 in the LG/J–by–SM/J cross. Capn10 plays an important role in regulating obesity and diabetes in mice
    corecore