45 research outputs found
Impact of three years of large scale Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITNs) interventions on insecticide resistance in Anopheles gambiae s.l. in Benin
<p>Abstract</p> <p>Background</p> <p>In Benin, Indoor Residual Spraying (IRS) and long-lasting insecticidal nets (LLINs) are the cornerstones of malaria prevention. In the context of high resistance of <it>Anopheles gambiae </it>to pyrethroids, The National Malaria Control Program (NMCP) has undertaken a full coverage of IRS in a no-flood zone in the Oueme region, coupled with the distribution of LLINs in a flood zone. We assessed the impact of this campaign on phenotypic resistance, <it>kdr </it>(knock-down resistance) and <it>ace-1<sup>R </sup></it>(insensitive acetylcholinesterase) mutations.</p> <p>Methods</p> <p>Insecticides used for malaria vector control interventions were bendiocarb WP (0.4 g/m<sup>2</sup>) and deltamethrin (55 mg/m<sup>2</sup>), respectively for IRS and LLINs. Susceptibility status of <it>An. gambiae </it>was assessed using World Health Organization bioassay tests to DDT, permethrin, deltamethrin and bendiocarb in the Oueme region before intervention (2007) and after interventions in 2008 and 2010. <it>An. gambiae </it>specimens were screened for identification of species, molecular M and S forms and for the detection of the West African <it>kdr </it>(L1014F) as well as <it>ace-1<sup>R </sup></it>mutations using PCR techniques.</p> <p>Results</p> <p>The univariate logistic regression performed showed that <it>kdr </it>frequency has increased significantly during the three years in the intervention area and in the control area. Several factors (LLINs, IRS, mosquito coils, aerosols, use of pesticides for crop protection) could explain the selection of individual resistant <it>An. gambiae</it>. The <it>Kdr </it>resistance gene could not be the only mechanism of resistance observed in the Oueme region. The high susceptibility to bendiocarb is in agreement with a previous study conducted in Benin. However, the occurrence of <it>ace-1<sup>R </sup></it>heterozygous individuals even on sites far from IRS areas, suggests other factors may contribute to the selection of resistance other than those exerted by the vector control program.</p> <p>Conclusion</p> <p>The results of this study have confirmed that <it>An.gambiae </it>have maintained and developed the resistance to pyrethroids, but are still susceptible to bendiocarb. Our data clearly shows that selection of resistant individuals was caused by other insecticides than those used by the IRS and LLINs.</p
Reciprocal Tripartite Interactions between the Aedes aegypti Midgut Microbiota, Innate Immune System and Dengue Virus Influences Vector Competence
Dengue virus is one of the most important arboviral pathogens and the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. It is transmitted between humans by the mosquitoes Aedes aegypti and Aedes albopictus, and at least 2.5 billion people are at daily risk of infection. During their lifecycle, mosquitoes are exposed to a variety of microbes, some of which are needed for their successful development into adulthood. However, recent studies have suggested that the adult mosquito's midgut microflora is critical in influencing the transmission of human pathogens. In this study we assessed the reciprocal interactions between the mosquito's midgut microbiota and dengue virus infection that are, to a large extent, mediated by the mosquito's innate immune system. We observed a marked decrease in susceptibility to dengue virus infection when mosquitoes harbored certain field-derived bacterial isolates in their midgut. Transcript abundance analysis of selected antimicrobial peptide genes suggested that the mosquito's microbiota elicits a basal immune activity that appears to act against dengue virus infection. Conversely, the elicitation of the mosquito immune response by dengue virus infection itself influences the microbial load of the mosquito midgut. In sum, we show that the mosquito's microbiota influences dengue virus infection of the mosquito, which in turn activates its antibacterial responses
Kdr-based insecticide resistance in Anopheles gambiae s.s populations in
<p>Abstract</p> <p>Background</p> <p>The spread of insecticide resistance in the malaria mosquito, <it>Anopheles gambiae </it>is a serious threat for current vector control strategies which rely on the use of insecticides. Two mutations at position 1014 of the S<sub>6 </sub>transmembrane segment of domain II in the voltage gated sodium channel, known as <it>kdr </it>(<it>knockdown resistance</it>) mutations leading to a change of a Leucine to a Phenylalanine (L1014F) or to a Serine (L1014S) confer resistance to DDT and pyrethroid insecticides in the insect. This paper presents the current distribution of the <it>kdr </it>alleles in wild <it>Anopheles gambiae </it>populations in Cameroon.</p> <p>Results</p> <p>A total of 1,405 anopheline mosquitoes were collected from 21 localities throughout Cameroon and identified as <it>An. gambiae </it>(N = 1,248; 88.8%), <it>An. arabiensis </it>(N = 120; 8.5%) and <it>An. melas </it>(N = 37; 2.6%). Both <it>kdr </it>alleles 1014F and 1014S were identified in the M and S molecular forms of <it>An. gambiae </it>s.s. The frequency of the 1014F allele ranged from 1.7 to 18% in the M-form, and from 2 to 90% in the S-form. The 1014S allele ranged from 3-15% in the S-form and in the M-form its value was below 3%. Some specimens were found to carry both resistant <it>kdr </it>alleles.</p> <p>Conclusion</p> <p>This study provides an updated distribution map of the <it>kdr </it>alleles in wild <it>An. gambiae </it>populations in Cameroon. The co-occurrence of both alleles in malaria mosquito vectors in diverse ecological zones of the country may be critical for the planning and implementation of malaria vector control interventions based on IRS and ITNs, as currently ongoing in Cameroon.</p
Genetic population structure of Anopheles gambiae in Equatorial Guinea
BACKGROUND: Patterns of genetic structure among mosquito vector populations in islands have received particular attention as these are considered potentially suitable sites for experimental trials on transgenic-based malaria control strategies. In this study, levels of genetic differentiation have been estimated between populations of Anopheles gambiae s.s. from the islands of Bioko and AnnobĂłn, and from continental Equatorial Guinea (EG) and Gabon. METHODS: Genotyping of 11 microsatellite loci located in chromosome 3 was performed in three island samples (two in Bioko and one in AnnobĂłn) and three mainland samples (two in EG and one in Gabon). Four samples belonged to the M molecular form and two to the S-form. Microsatellite data was used to estimate genetic diversity parameters, perform demographic equilibrium tests and analyse population differentiation. RESULTS: High levels of genetic differentiation were found between the more geographically remote island of AnnobĂłn and the continent, contrasting with the shallow differentiation between Bioko island, closest to mainland, and continental localities. In Bioko, differentiation between M and S forms was higher than that observed between island and mainland samples of the same molecular form. CONCLUSION: The observed patterns of population structure seem to be governed by the presence of both physical (the ocean) and biological (the M-S form discontinuity) barriers to gene flow. The significant degree of genetic isolation between M and S forms detected by microsatellite loci located outside the "genomic islands" of speciation identified in A. gambiae s.s. further supports the hypothesis of on-going incipient speciation within this species. The implications of these findings regarding vector control strategies are discussed
Evidence of Introgression of the ace-1R Mutation and of the ace-1 Duplication in West African Anopheles gambiae s. s
Background: The role of inter-specific hybridisation is of particular importance in mosquito disease vectors for predicting the evolution of insecticide resistance. Two molecular forms of Anopheles gambiae s.s., currently recognized as S and M taxa, are considered to be incipient sibling species. Hybrid scarcity in the field was suggested that differentiation of M and S taxa is maintained by limited or absent gene flow. However, recent studies have revealed shared polymorphisms within the M and S forms, and a better understanding of the occurrence of gene flow is needed. One such shared polymorphism is the G119S mutation in the ace-1 gene (which is responsible for insecticide resistance); this mutation has been described in both the M and S forms of A. gambiae s.s. Methods and Results: To establish whether the G119S mutation has arisen independently in each form or by genetic introgression, we analysed coding and non-coding sequences of ace-1 alleles in M and S mosquitoes from representative field populations. Our data revealed many polymorphic sites shared by S and M forms, but no diversity was associated with the G119S mutation. These results indicate that the G119S mutation was a unique event and that genetic introgression explains the observed distribution of the G119S mutation within the two forms. However, it was impossible to determine from our data whether the mutation occurred first in the S form or in the M form. Unexpectedly, sequence analysis of some resistant individuals revealed a duplication of the ace-1 gene that was observed in both A. gambiae s.s. M and S forms. Again, the distribution of this duplication in the two forms most likely occurred through introgression. Conclusions: These results highlight the need for more research to understand the forces driving the evolution of insecticide resistance in malaria vectors and to regularly monitor resistance in mosquito populations of Africa
Field efficacy of a new mosaic long-lasting mosquito net (PermaNetÂź 3.0) against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa
<p>Abstract</p> <p>Background</p> <p>Due to the spread of pyrethroid-resistance in malaria vectors in Africa, new strategies and tools are urgently needed to better control malaria transmission. The aim of this study was to evaluate the performances of a new mosaic long-lasting insecticidal net (LLIN), i.e. PermaNet<sup>Ÿ </sup>3.0, against wild pyrethroid-resistant <it>Anopheles gambiae s.l</it>. in West and Central Africa.</p> <p>Methods</p> <p>A multi centre experimental hut trial was conducted in Malanville (Benin), Vallée du Kou (Burkina Faso) and Pitoa (Cameroon) to investigate the exophily, blood feeding inhibition and mortality induced by PermaNet<sup>Ÿ </sup>3.0 (i.e. a mosaic net containing piperonyl butoxide and deltamethrin on the roof) comparatively to the WHO recommended PermaNet<sup>Ÿ </sup>2.0 (unwashed and washed 20-times) and a conventionally deltamethrin-treated net (CTN).</p> <p>Results</p> <p>The personal protection and insecticidal activity of PermaNet 3.0 and PermaNet<sup>Ÿ </sup>2.0 were excellent (>80%) in the "pyrethroid-tolerant" area of Malanville. In the pyrethroid-resistance areas of Pitoa (metabolic resistance) and Vallée du Kou (presence of the L1014F <it>kdr </it>mutation), PermaNet<sup>Ÿ </sup>3.0 showed equal or better performances than PermaNet<sup>Ÿ </sup>2.0. It should be noted however that the deltamethrin content on PermaNet<sup>Ÿ </sup>3.0 was up to twice higher than that of PermaNet<sup>Ÿ </sup>2.0. Significant reduction of efficacy of both LLIN was noted after 20 washes although PermaNet<sup>Ÿ </sup>3.0 still fulfilled the WHO requirement for LLIN.</p> <p>Conclusion</p> <p>The use of combination nets for malaria control offers promising prospects. However, further investigations are needed to demonstrate the benefits of using PermaNet<sup>Ÿ </sup>3.0 for the control of pyrethroid resistant mosquito populations in Africa.</p
Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa
<p>Abstract</p> <p>Background</p> <p>Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. This study reported the spatial and seasonal variations of insecticide resistance in malaria vectors in Benin, West Africa.</p> <p>Methods</p> <p><it>Anopheles gambiae s.l </it>populations were collected from October 2008 to June 2010 in four sites selected on the basis of different use of insecticides and environment. WHO susceptibility tests were carried out to detect resistance to DDT, fenitrothion, bendiocarb, permethrin and deltamethrin. The synergist piperonyl butoxide was used to assess the role of non-target site mechanisms in pyrethroid resistance. <it>Anopheles gambiae </it>mosquitoes were identified to species and to molecular M and S forms using PCR techniques. Molecular and biochemical assays were carried out to determine <it>kdr </it>and <it>Ace.1<sup>R </sup></it>allelic frequencies and activity of the detoxification enzymes.</p> <p>Results</p> <p>Throughout the surveys very high levels of mortality to bendiocarb and fenitrothion were observed in <it>An. gambiae s.l</it>. populations. However, high frequencies of resistance to DDT and pyrethroids were seen in both M and S form of <it>An. gambiae s.s</it>. and <it>Anopheles arabiensis</it>. PBO increased the toxicity of permethrin and restored almost full susceptibility to deltamethrin. <it>Anopheles gambiae s.l</it>. mosquitoes from Cotonou and Malanville showed higher oxidase activity compared to the Kisumu susceptible strain in 2009, whereas the esterase activity was higher in the mosquitoes from Bohicon in both 2008 and 2009. A high frequency of <it>1014F kdr </it>allele was initially showed in <it>An. gambiae </it>from Cotonou and Tori-Bossito whereas it increased in mosquitoes from Bohicon and Malanville during the second year. For the first time the <it>L1014S kdr </it>mutation was found in <it>An. arabiensis </it>in Benin. The <it>ace.1<sup>R </sup></it>mutation was almost absent <it>in An. gambiae s.l</it>.</p> <p>Conclusion</p> <p>Pyrethroid and DDT resistance is widespread in malaria vector in Benin and both metabolic and target site resistance are implicated. Resistance was not correlated with a change of malaria species and/or molecular forms. The <it>1014S kdr </it>allele was first identified in wild population of <it>An. arabiensis </it>hence confirming the expansion of pyrethroid resistance alleles in Africa.</p
Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors
<p>Abstract</p> <p>Background</p> <p>Mosquitoes of the <it>Anopheles gambiae </it>species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect <it>Plasmodium </it>development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution.</p> <p>Methods</p> <p>Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the <it>An. gambiae </it>species complex in both East and West Africa.</p> <p>Results</p> <p>Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes.</p> <p>Conclusion</p> <p>It is well known that phylogenetic and population history in the <it>An. gambiae </it>complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the <it>An. gambiae </it>genome are discussed.</p
The role of fragment-based and computational methods in polypharmacology
Polypharmacology-based strategies are gaining increased attention as a novel approach to obtaining potentially innovative medicines for multifactorial diseases. However, some within the pharmaceutical community have resisted these strategies because they can be resource-hungry in the early stages of the drug discovery process. Here, we report on fragment-based and computational methods that might accelerate and optimize the discovery of multitarget drugs. In particular, we illustrate that fragment-based approaches can be particularly suited for polypharmacology, owing to the inherent promiscuous nature of fragments. In parallel, we explain how computer-assisted protocols can provide invaluable insights into how to unveil compounds theoretically able to bind to more than one protein. Furthermore, several pragmatic aspects related to the use of these approaches are covered, thus offering the reader practical insights on multitarget-oriented drug discovery projects