161 research outputs found

    Effet thermoélectrique dans les métaux liquides sous champ magnétique.

    Get PDF
    Lorsqu'un champ magnétique est appliqué au cours de la solidification directionnelle, une convection dans la phase liquide peut être induite par l'effet thermoélectrique. En effet la présence d'un gradient de température le long du front de solidification peut provoquer la circulation du courant thermoélectrique, qui interagit avec le champ magnétique appliqué pour créer un écoulement (convection thermo électromagnétique-TEMC). Les conditions de transport de soluté et de l'énergie sont affectées par cette convection, donc il y a influence sur l'espacement des dendrites et la macro-ségrégation des composants de l'alliage. Dans ce travail, l'influence du champ magnétique sur la solidification directionnelle d'alliages métalliques est étudiée. Des travaux expérimentaux de la solidification directionnelle de Sn-Pb et Sn-Bi alliages sont réalisés. La solidification directionnelle dans la configuration Bridgman est effectuée avec ou sans champ magnétique appliqué. L'influence, sur la solidification, du champ magnétique et d'un courant électrique (AC et DC) appliqués est étudiée. Les mouvements du liquide provoquent de fortes macro-ségrégations ainsi qu'un modification des espacements interdendritiques. Les résultats expérimentaux sont interprétés à la lumière d'une modélisation heuristique. Le cas d'un champ magnétique tournant a été aussi étudié. Ainsi, la valeur de la rotation du champ est choisie pour ralentir assez brassage électromagnétique sans pour autant supprimer les effets de TEMC. À faible vitesse de tirage et faible vitesse de rotation faible champ une macro-ségrégation en forme de spirale a pu être obtenue.If magnetic field is applied during directional solidification, liquid phase convection can be induced by means of thermoelectromagnetic effect. Temperature gradient at the solidification front can cause thermoelectric current circulation, which then interacts with field and creates convection (Thermoelectromagnetic convection-TEMC). Solute and energy transport conditions are affected by this convection, thus it influences dendrite spacing and macrosegregation of the alloys. In this work magnetic field influence on the directional solidification of metallic alloys is studied. Experimental work of directional solidification of Sn-Pb and Sn-Bi alloys is done. Alloys are directionally solidified in Bridgman setup without or with applied magnetic field. Influence on the structure by magnetic field and applied electric current (AC and DC) is studied in this work. Analytical and experimental results are compared and interpreted. Bridgman solidification under rotating transverse magnetic field is studied as well, field rotation value is chosen to be slow enough that electromagnetic stirring does not fully suppress effects of TEMC. At low pulling velocity and low field rotation velocity spiral shaped component macrosegregation can be achieved.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Etude de l'influence de la convection naturelle et forcée sur le processus de la solidification (cas d'un alliage métallique binaire.)

    Get PDF
    Ce travail se situé dans la perspective d'un contrôle de la structure de solidification des alliages métalliques sous l'effet de la convection naturelle et forcée afin d'améliorer à terme la maîtrise des microstructures de solidification grâce à un brassage électromagnétique efficace permettant d'avoir une homogénéisation du bain liquide qui par la suite peut améliorer la microstructure finale de l'alliage. La possibilité retenue dans ce travail est de réaliser ce brassage sans contact avec la solution liquide (alliage sous fusion) et sans pollution par d'autres éléments en utilisant un brassage par la force de Lorentz. L'objet de la thèse comporte une étude théorique à la fois expérimentale basée sur une installation expérimentale particulièrement documentée et instrumentée, développée au laboratoire SIMAP/EPM à Grenoble, nommée AFRODITE. Ce dispositif expérimental permet de fournir des données de quantitatives et qualitatives sur le processus de solidification des alliages métalliques. Ces données sont nécessaires à la contribution aux études menées sur la solidification des alliages métallique et enrichir la base des donnée des modèles numériques développés pour prédire les défauts liés à la solidification. L'alliage choisi dans notre travail est l'étain-plomb, vue sa basse température de fusion. Les expériences envisagées visent à étudier l'effet de deux modes de configuration dynamique sur la solidification de l'alliage Sn-Pb: la convection thermosolutale avec la variation de deux paramètres essentiels (la vitesse de refroidissement et la différence de température expérimentale) et la convection forcée par l'utilisation de plusieurs modes de brassage électromagnétique. Cette étude s'intéresse en particulier à la caractérisation des macrostructures et les défauts liés à la macroségrégation. L'originalité de l'étude vise à mesurer in situ les températures instantanées. Ceci nous a permis d'évaluer l'évolution du transfert thermique due à la convection naturelle/forcée, ainsi que leurs influence sur le processus de la solidification sous différents aspects. L'analyse post-mortem de l'alliage métallique, fournit la structure de solidification et la distribution des ségrégations à différentes échelles (mésoscopique et macroscopique).This work is situated in the context of control of the solidification of metallic alloys structure under the effect of natural and forced convection to enhance control of solidification microstructures term through effective electromagnetic stirring to have a homogenizing the liquid which may subsequently improve the final microstructure of the alloy. The possibility considered in this work is to achieve this stirring without contacting the liquid solution (alloy in fusion) and pollution by other elements using a patch by the Lorentz force. The purpose of the thesis consists both a theoretical and experimental study based on an experimental setup particularly documented and instrumented developed / EPM SIMAP laboratory in Grenoble, named AFRODITE. The experimental device used to provide quantitative and qualitative data on the process of solidification of metallic alloys. These data are necessary for the contribution to studies on the solidification of metallic alloys and enrich the data base developed numerical models to predict defects related to solidification. The alloy selected from our work is tin-lead, for its low melting temperature. The proposed experiments are designed to study the effect of two types of dynamic configuration on the solidification of Sn-Pb alloy: the thermosolutal convection with the variation of two essential parameters (cooling rate and the difference in experimental temperature) and forced convection by the use of several modes of electromagnetic stirring. This study is particularly interested in the characterization of macrostructures and defects related to macrosegregation. The originality of this study is to measure in situ instantaneous temperatures. This allowed us to assess the evolution of the heat transfer due to natural / forced convection and their influence on the process of solidification in different aspects. The post-mortem analysis of the metal alloy provides the solidification structure and distribution of segregation at different scales (mesoscopic and macroscopic).SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Etude de l'effect thermoélectrique magnétique en solidification directionnelle d'alliages Al-Cu.

    Get PDF
    Nous étudions l'effet thermo-électrique et les phénomènes qui en résultent, forces et les courants thermoélectriques (TEC) sous l'action d'un champ magnétique externe imposé lors de la solidification d'alliages métalliques. Nous avons utilisé des simulations numériques, des observations directes et des examens de laboratoire. L'interaction entre les courants thermo-électriques et le champ magnétique externe lors de la solidification se produit des forces électromagnétiques et donc un écoulement du métal liquide. Le résultat est nommé effet magnétique thermoélectrique (TEME). Les formulations de TEC, les forces et les équations gouvernant les écoulements TEM sont donnés. Afin de mieux prouver l'existence de la TEME, des expériences par méthode d'imagerie à rayons X menées au synchrtron ont été utilisées pour observer in-situ et en temps réel l'action directe des forces et les mouvements TEM pendant la solidification directionnelle des alliages Al-Cu. Nous avons montré la cohérence raisonnable entre les calculs analytiques et des simulations numériques qui ont exécuté avec les mêmes conditions de traitement. En outre, la capacité des écoulements thermo-électriques à influer sur la microstructure lors de la solidification directionnelle sont expérimentalement évaluées dans les autres cas en réalité. La solidification directionnelle d'une seule phase de formation des alliages Al-Cu sous divers champs magnétiques montre que les écoulements TEM sont capables de modifier la forme de l'interface liquide-solide conduisant à des morphologies différentes. L'effet le plus intense se produit dans différents champs magnétiques pour différentes morphologies, en effet, le champ magnétique élevé est nécessaire pour la morphologie a une plus petite longueur typique. Ceci est en accord avec le comportement des vitesses de TEM qui varient avec les champs magnétiques imposés ainsi que les différentes échelles de longueur typique. Cette variation est confirmée par des simulations numériques 3D. Nous montrons que les dendrites primaires et à l'avant de la phase eutectique, peuvent être modifiés par les mouvements TEM et les forces de TEM dans le solide pour améliorer la croissance de la phase de Al2Cu facettes primaire pendant la solidification des Al-40wt%Cu hypereutectiques. Le mécanisme de renforcement de la croissance de la phase facettes Al2Cu est confirmé par la transmission électronique observation au microscope, et la raison de la formation de la structure de croissance de couple de Al-26wt% Cu alliages est vérifiée par le test de l'analyse thermique différentielle. Ainsi, nous pouvons affirmer que le champ magnétique élevé facilite la formation de la structure de la croissance de couple pour hypoeutectiques alliages Al-Cu, et favorise la croissance de la phase Al2Cu primaire pour hypereutectiques Al-Cu alliages.We have investigated the thermoelectric magnetic (TEM) forces and flows resulting from the interaction between the internal thermoelectric currents (TEC) and the imposed external magnetic field during solidification. Numerical simulations, direct observations and experimental examinations were undertaken. As the natural phenomenon, TEC was discovered almost 200 years ago, therefore, our introduction begins from then on. It is shown that the interaction between TEC and external magnetic field during solidification in the cont put forth new interesting phenomena in the context of a rising field named Electromagnetic Processing of Materials. After that, it is discussed how the TEC appear and the TEM effect (TEME, referring to both TEM forces and flows) behaves at the liquid-solid interface in directional solidification under external magnetic field. Meanwhile, formulations of TEC, TEM forces and flows are given, and numerical simulations of TEME are performed to visually display the TEM forces and flows. In order to further prove the existence of TEME, in situ synchrotron X-ray imaging method was used to observe the direct resultant of TEM forces and flows during directionally solidifying the Al-Cu alloys. The observations show reasonable consistency with the analytical calculations and numerical simulations performed with the same process conditions. Except confirmation the existence of TEME, its abilities to affect the microstructure during directional solidification are experimentally investigated in the more realistic cases. The single phase forming Al-Cu alloys are directionally solidified under various magnetic fields, which shows that TEM flows are capable to modify the shape of liquid-solid interface, and the most intensive affect occurs under different magnetic fields for different interface morphologies. Indeed, the smaller the typical length of the morphology is the higher the magnetic field is needed. This agrees with the estimating regulation of the velocity of TEM flows changing with magnetic fields for different typical length scales, and is confirmed by 3D numerical simulations. Directional solidification of multiphase forming Al-Cu alloys under various magnetic fields shows that the mushy zone length (distance between the front of primary dendrites and eutectic phases) varies with the magnetic fields, which can be attributed to the redistribution of rejected solutes by TEM flows. In addition, apparent enhanced growth of the primary faceted Al2Cu phase is founded when Al-40wt%Cu alloys are solidified under sufficient high magnetic fields, this should be ascribed to the TEM forces acting on the solid because strains are able to lead the formation of defects and thus benefit to the growth of faceted phase. This is confirmed by comparison of the dislocations in samples solidified without and with a 10T magnetic field via transmission electron microscopy observation. In another aspect, an almost entire couple growth structure is achieved when Al-26wt%Cu alloys are directionally solidified under a 4T magnetic field, which can be explained by the effect of high magnetic field on changing the nucleation temperature and growth velocity of each phase. Moreover, the differential thermal analysis test on the nucleation temperature of both a-Al and eutectic phases verified this explanation. Therefore, we conclude that high magnetic field facilitates the formation of couple growth structure for hypoeutectic Al-Cu alloys, reversely, enhances the growth of primary dendrite for hypereutectic Al-Cu alloys.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Characteristisation of a recirculating flow using ultrasonic Doppler velocimetry

    Get PDF
    We deal with a metallic GaInSn flow driven by a traveling magnetic field. The flow field in a parallelipedic box was measured by ultrasonic Doppler velocimetry. The mean velocity profiles and fluctuating behavior are obtained. The mean velocity is influenced by the pole pitch of the linear motor. The magnetic field distribution is measured and the Lorentz force is analyzed. The turbulent character of the flow is confirmed by discrete Fourier analysis of the registered signal, the flow exhibits continuous frequency spectrum

    In-Situ Fabrication of aligned equxiaed Materials by High Magnetic Field during directional solidification

    No full text
    International audienceThe application of a high magnetic field was capable of inducing the formation of aligned equiaxed grains during directional solidification. The alignment and refinement of equiaxed grains were enhanced as the magnetic field intensity increased. Further, the thermoelectric power difference at the liquid/solid interface in four alloys was measured in-situ during directional solidification. The formation of aligned equiaxed grains under the magnetic field should be attributed to the combined action of thermoelectric magnetic force and magnetization force

    Contrôle électromagnétique des transferts de masse à l'interface entre une phase saline et une phase liquide à haute température.

    Get PDF
    Nous présentons des expériences, utilisant la technique du creuset froid, dans lesquelles des lanthanides, ou d'autres éléments, sont transférés d'une phase saline fluorée vers une phase métallique liquide contenant un agent réducteur tel le Lithium. Du ZrF4 (5 mol%), ou bien du CeF3 (2 mol%), est dissous dans du LiF. Un alliage métallique Sb-Li contenant 5 ou 10 wt % de Lithium, est mis en contact de la phase saline à t = 0. Le taux de transfert est déduit des analyses ICP post mortem effectuées sur des échantillons prélevés dans le métal à pas de temps donnés. La cinétique du transfert est très rapide et dépend de l'agitation électromagnétique

    Comparison between numerical and experimental results on thermoconvective instabilities of a high-Prandtl-number liquid

    Get PDF
    International audienceThe flow structuration of silicon oil ͑Prandtl number of 10.3͒ in a open cylindrical pool heated from the center of the surface is investigated numerically. Our purpose is to perform the numerical simulation of experimental results obtained by Favre et al. ͓Phys. Fluids 9, 1473 ͑1997͔͒ who observed transitions between steady and axisymmetric flows at sufficiently low values of the Marangoni number ͑Ma͒ and various types of instability depending on the height of the fluid. The hydrothermal wave regime has been obtained at critical values of Ma which depend on the Bond number and on the aspect ratio. The numerical results are in good agreement with the experimental ones

    Etude des instabilités thermocapillaires et thermogravitaires dans un bain d'huile

    Get PDF
    La structuration de l'écoulement d'une huile aux silicones (nombre de Prandtl Pr 10, 3 = ) dans une cellule cylindrique (rayon extérieure 2 50 R mm = ) à surface libre soumise à un gradient horizontal de température est étudiée numériquement. Le fluide de hauteur [ ] 1;15 h mm Î est chauffé par un plot horizontal de rayon 1 15 R mm = à la température 1 T posé en surface au centre de la cellule et refroidi par les parois inférieures et latérales de la cuve maintenues à une température 2 T telle que 1 2 0 T T T D = - ³ . Les forces motrices de l'écoulement sont les forces thermocapillaires traduites par le nombre adimensionnel de Marangoni (Ma) et les forces thermogravitaires traduites par le nombre de Rayleigh (Ra). L'objectif est d'acquérir des connaissances fines sur les types d'instabilités thermoconvectives et leur modélisation numérique en se basant sur des résultats expérimentaux obtenus dans les travaux de doctorat de E. Favre (1997). Les simulations numériques 2D ou 3D sont réalisées avec le logiciel commercial Fluent. Un écoulement de base stationnaire et axisymétrique est obtenu dès que l'écart de température imposé T D est différent de zéro. Pour 14, 9 h mm = , une confrontation des résultats numériques et expérimentaux de l'écoulement de base est réalisée. Lorsque la contrainte thermique appliquée est augmentée, l'écoulement de base se déstabilise en différents types d'instabilités stationnaires en fonction de la hauteur de fluide considérée. L'instabilité en rouleaux co-rotatifs se développant près du plot chauffant pour des petites hauteurs 3 h mm £ et celle en rouleaux d'axes longitudinaux pour les grandes hauteurs 6 h mm > ont pu être retrouvées numériquement. Au-delà d'un second seuil, les instabilités deviennent instationnaires. Pour de faibles hauteurs de fluide, des ondes hydrothermales, instabilités ondulatoires propagatives, apparaissent en superposition des rouleaux co-rotatifs. Leurs structures ont pu être visualisées et leurs seuils d'apparition déterminés par des méthodes numériques spécifiques. La longueur d'onde et la valeur de Marangoni critique ( ) c Ma d'apparition des instabilités sont en bon accord avec les valeurs expérimentales de E. Favre (1997)

    First analysis of a numerical benchmark for 2D columnar solidification of binary alloys

    No full text
    International audienceDuring the solidification of metal alloys, chemical heterogeneities at the product scale (macrosegregation) develop. Numerical simulation tools are beginning to appear in the industry, however their predictive capabilities are still limited. We present a numerical benchmark exercise treating the performance of models in the prediction of macrosegregation. In a first stage we defined a "minimal" (i.e. maximally simplified) solidification model, describing the coupling of the solidification of a binary alloy and of the transport phenomena (heat, solute transport and fluid flow) that lead to macrosegregation in a fully columnar ingot with a fixed solid phase. This model is solved by four different numerical codes, employing different numerical methods (FVM and FEM) and various solution schemes. We compare the predictions of the evolution of macrosegregation in a small (10×6 cm) ingot of Sn-10wt%Pb alloys. Further, we present the sensitivities concerning the prediction of instabilities leading to banded channel mesosegregations
    corecore