6,443 research outputs found

    Internal relaxation time in immersed particulate materials

    Full text link
    We study the dynamics of the solid to liquid transition for a model material made of elastic particles immersed in a viscous fluid. The interaction between particle surfaces includes their viscous lubrication, a sharp repulsion when they get closer than a tuned steric length and their elastic deflection induced by those two forces. We use Soft Dynamics to simulate the dynamics of this material when it experiences a step increase in the shear stress and a constant normal stress. We observe a long creep phase before a substantial flow eventually establishes. We find that the typical creep time relies on an internal relaxation process, namely the separation of two particles driven by the applied stress and resisted by the viscous friction. This mechanism should be relevant for granular pastes, living cells, emulsions and wet foams

    Two-Qubit Separabilities as Piecewise Continuous Functions of Maximal Concurrence

    Full text link
    The generic real (b=1) and complex (b=2) two-qubit states are 9-dimensional and 15-dimensional in nature, respectively. The total volumes of the spaces they occupy with respect to the Hilbert-Schmidt and Bures metrics are obtainable as special cases of formulas of Zyczkowski and Sommers. We claim that if one could determine certain metric-independent 3-dimensional "eigenvalue-parameterized separability functions" (EPSFs), then these formulas could be readily modified so as to yield the Hilbert-Schmidt and Bures volumes occupied by only the separable two-qubit states (and hence associated separability probabilities). Motivated by analogous earlier analyses of "diagonal-entry-parameterized separability functions", we further explore the possibility that such 3-dimensional EPSFs might, in turn, be expressible as univariate functions of some special relevant variable--which we hypothesize to be the maximal concurrence (0 < C <1) over spectral orbits. Extensive numerical results we obtain are rather closely supportive of this hypothesis. Both the real and complex estimated EPSFs exhibit clearly pronounced jumps of magnitude roughly 50% at C=1/2, as well as a number of additional matching discontinuities.Comment: 12 pages, 7 figures, new abstract, revised for J. Phys.

    Coulomb stress transfer and fault interaction over millennia on non-planar active normal faults: TheMw 6.5-5.0 seismic sequence of 2016-2017, central Italy

    Get PDF
    In order to investigate the importance of including strike-variable geometry and the knowledge of historical and palaeoseismic earthquakes when modelling static Coulomb stress transfer and rupture propagation, we have examined the August-October 2016 A.D. and January 2017 A.D. central Apennines seismic sequence (Mw 6.0, 5.9, 6.5 in 2016 A.D. (INGV) and Mw 5.1, 5.5, 5.4, 5.0 in 2017 A.D. (INGV)).We model both the coseismic loading (from historical and palaeoseismic earthquakes) and interseismic loading (derived from Holocene fault slip-rates) using strike-variable fault geometries constrained by fieldwork. The inclusion of the elapsed times from available historical and palaeoseismological earthquakes and on faults enables us to calculate the stress on the faults prior to the beginning of the seismic sequence. We take account the 1316-4155 yr elapsed time on the Mt. Vettore fault (that ruptured during the 2016 A.D. seismic sequence) implied by palaeoseismology, and the 377 and 313 yr elapsed times on the neighbouring Laga and Norcia faults respectively, indicated by the historical record. The stress changes through time are summed to show the state of stress on the Mt. Vettore, Laga and surrounding faults prior to and during the 2016-2017 A.D. sequence. We show that the build up of stress prior to 2016 A.D. on strike-variable fault geometries generated stress heterogeneities that correlate with the limits of the main-shock ruptures. Hence, we suggest that stress barriers appear to have control on the propagation and therefore the magnitudes of the main-shock ruptures

    Advances in delimiting the Hilbert-Schmidt separability probability of real two-qubit systems

    Full text link
    We seek to derive the probability--expressed in terms of the Hilbert-Schmidt (Euclidean or flat) metric--that a generic (nine-dimensional) real two-qubit system is separable, by implementing the well-known Peres-Horodecki test on the partial transposes (PT's) of the associated 4 x 4 density matrices). But the full implementation of the test--requiring that the determinant of the PT be nonnegative for separability to hold--appears to be, at least presently, computationally intractable. So, we have previously implemented--using the auxiliary concept of a diagonal-entry-parameterized separability function (DESF)--the weaker implied test of nonnegativity of the six 2 x 2 principal minors of the PT. This yielded an exact upper bound on the separability probability of 1024/{135 pi^2} =0.76854$. Here, we piece together (reflection-symmetric) results obtained by requiring that each of the four 3 x 3 principal minors of the PT, in turn, be nonnegative, giving an improved/reduced upper bound of 22/35 = 0.628571. Then, we conclude that a still further improved upper bound of 1129/2100 = 0.537619 can be found by similarly piecing together the (reflection-symmetric) results of enforcing the simultaneous nonnegativity of certain pairs of the four 3 x 3 principal minors. In deriving our improved upper bounds, we rely repeatedly upon the use of certain integrals over cubes that arise. Finally, we apply an independence assumption to a pair of DESF's that comes close to reproducing our numerical estimate of the true separability function.Comment: 16 pages, 9 figures, a few inadvertent misstatements made near the end are correcte

    Influence of Fault System Geometry and Slip Rates on the Relative Role of Coseismic and Interseismic Stresses on Earthquake Triggering and Recurrence Variability

    Get PDF
    We model Coulomb stress transfer (CST) due to 30 strong earthquakes occurring on normal faults since 1509 CE in Calabria, Italy, including the influence of interseismic loading, and compare the results to existing studies of stress interaction from the Central and Southern Apennines, Italy. The three normal fault systems have different geometries and long‐term slip‐rates. We investigate the extent to which stress transfer can influence the occurrence of future earthquakes and what factors may govern the variability in earthquake recurrence in different fault systems. The Calabrian, Central Apennines, and Southern Apennines fault systems have 91%, 73%, and 70% of faults with mean positive cumulative CST in the time considered; this is due to fewer faults across strike, more across strike stress reductions, and greater along‐strike spacing in the three regions respectively. In regions with close along strike spacing or few faults across strike, such as Calabria and Southern Apennines, the stress loading history is mostly dominated by interseismic loading and most faults are positively stressed before an earthquake occur on them (96% of all faults that ruptured in Calabria; 94% of faults in Southern Apennines), and some of the strongest earthquakes occur on faults with the highest mean cumulative stress of all faults prior to the earthquake. In the Central Apennines, where across strike interactions are the predominant process, 79% of earthquakes occur on faults positively stressed. The results highlight that fault system geometry plays a central role in characterizing the stress evolution associated with earthquake recurrence

    Betatron emission as a diagnostic for injection and acceleration mechanisms in laser-plasma accelerators

    Full text link
    Betatron x-ray emission in laser-plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emission can reveal crucial information about relativistic laser-plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half.Comment: 8 pages, 6 figures. arXiv admin note: text overlap with arXiv:1104.245

    The potential of integrative phenomics to harness underutilized crops for improving stress resilience

    Get PDF
    The current agricultural and food system faces diverse and increasing challenges. These include feeding an ever-growing human population, expected to reach about 10 billion by 2050 combined with societal disruption, and the need to cope with the impact of climate change (FAO, 2022). Given that future environmental conditions will limit crop productivity (Zhao et al., 2017; Cooper et al., 2021) and the limited potential to continually increase the performance of staple crops by conventional breeding (Hickey et al., 2019), there is an urgent need to transform agricultural systems. Central to this transformation is the application of alternative, accelerated, and sustainable approaches for the improvement and development of underutilized crops (Hickey et al., 2019). Modern breeding strategies for major crops have widely integrated novel technologies, such as advanced phenotyping or genome-wide interactions, and even epigenomics within “beyond the gene” strategies (Crisp et al., 2022) to speed up crop/genotype selection (Hickey et al., 2019; Kumar et al., 2023). Deploying phenotyping at different scales has the potential to identify novel trait(s) components that can be targeted to accelerate crop improvement (Araus and Cairns, 2014; Großkinsky et al., 2015b; Zhao et al., 2019; Varshney et al., 2021). There is even greater potential for these technologies when used to improve underutilized crops and support the agricultural transformation, as underutilized crops typically lack a biased breeding/selection history, i.e., they often exhibit a high genetic diversity and potential, and are usually better adapted to challenging environments (Kumar et al., 2021; Kumar et al., 2023). To illustrate the application of an integrative phenomics approach we discuss how combining multi-omics and advanced phenotyping is being applied to the underutilized oilseed crop Camelina sativa (camelina, gold-of-pleasure, false flax) to facilitate the generation of climate-smart crops for future agricultural systems

    Mapping the X-Ray Emission Region in a Laser-Plasma Accelerator

    Full text link
    The x-ray emission in laser-plasma accelerators can be a powerful tool to understand the physics of relativistic laser-plasma interaction. It is shown here that the mapping of betatron x-ray radiation can be obtained from the x-ray beam profile when an aperture mask is positioned just beyond the end of the emission region. The influence of the plasma density on the position and the longitudinal profile of the x-ray emission is investigated and compared to particle-in-cell simulations. The measurement of the x-ray emission position and length provides insight on the dynamics of the interaction, including the electron self-injection region, possible multiple injection, and the role of the electron beam driven wakefield.Comment: 5 pages, 4 figure

    Lifelong learning and schools as community learning centres : key aspects of a national curriculum draft policy framework for Malta

    Get PDF
    The island of Malta has been engaged in policy document formulations for curriculum renewal in the country’s educational system (4-16 years of age) since 1988 when the first National Minimum Curriculum (henceforth NMC) was launched (Wain, 1991; Borg et al, 1995). In 1999 a revamped NMC (Ministry of Education, 1999) was developed following a long process of consultation involving various stages and stakeholders. It was a compromise document (Borg & Mayo, 2006) which emerged as a result of reactions to a more radical and coherent draft document produced in 1988. Both curricular documents were subject to debates and critiques (Wain, 1991; Darmanin, 1993; Borg et al, 1995; Giordmaina, 2000; Borg and Mayo, 2006). More recently a series of volumes providing guidelines, key principles and aims for a national curriculum framework (henceforth NCF) have been produced (MEEF, 2011a,b,c,d) and are currently the target of debate and the focus of reactions by various stakeholders in education including teachers who were asked to read the volumes and provide reactions in the form of answers to a set questionnaire. In this paper, I will focus on one aspect of the documents, the first of its three aims: ‘Learners who are capable of successfully developing their full potential as lifelong learners.’ It is that aspect of the framework documents that falls within the purview of the title for this special issue. The use of this notion attests to the influence of the EU’s policy communications on member states, Malta having joined the Union in 2004 (Mayo, 2007).peer-reviewe

    On the evolution of environmental and mass properties of strong lens galaxies in COSMOS

    Get PDF
    Among the 100 strong lens candidates found in the COSMOS field, 20 with redshifts in the range [0.34,1.13], feature multiple images of background sources. Using the multi-wavelength coverage of the field and its spectroscopic follow-up, we characterize the evolution with redshift of the environment and of the dark-matter (DM) fraction of the lens galaxies. We present new redshift of the strong lens candidates. The lens environment is characterized by the projected 10 closest galaxies around each lens and by the number of galaxies with a projected distance less than 1Mpc at the lens galaxy redshift. In both cases, we perform similar measurements on a control sample of twin non-lens early type galaxies (ETGs). In addition, we identify group members and field galaxies in the X-ray and optical catalogs of galaxy groups. From those catalogs, we measure the external shear contribution at the lens galaxy positions. The systems are then modeled using a SIE plus the external shear due to the groups. We observe that the average stellar mass of lens galaxies increases with z and that the environment of lens galaxies is compatible with that of the twins. During the lens modeling, we notice that, when let free, the external shear points in a direction which is the mean direction of the external shear due to groups and of the closest galaxy to the lens. We notice that the DM fraction of the lens galaxies within the Einstein radius decreases as the redshift increases. Given these, we conclude that, while the environment of lens galaxies is compatible with that of non-lens ETGS, their mass properties evolves significantly with redshift: it is still not clear whether this advocates in favor of a stronger lensing bias toward massive objects at high redshift or is simply representative of the high proportion of massive and high stellar density galaxies at high redshift.Comment: Accepted for publication in A&A. Significant modifications in the paper but similar conclusion
    • 

    corecore