The generic real (b=1) and complex (b=2) two-qubit states are 9-dimensional
and 15-dimensional in nature, respectively. The total volumes of the spaces
they occupy with respect to the Hilbert-Schmidt and Bures metrics are
obtainable as special cases of formulas of Zyczkowski and Sommers. We claim
that if one could determine certain metric-independent 3-dimensional
"eigenvalue-parameterized separability functions" (EPSFs), then these formulas
could be readily modified so as to yield the Hilbert-Schmidt and Bures volumes
occupied by only the separable two-qubit states (and hence associated
separability probabilities). Motivated by analogous earlier analyses of
"diagonal-entry-parameterized separability functions", we further explore the
possibility that such 3-dimensional EPSFs might, in turn, be expressible as
univariate functions of some special relevant variable--which we hypothesize to
be the maximal concurrence (0 < C <1) over spectral orbits. Extensive numerical
results we obtain are rather closely supportive of this hypothesis. Both the
real and complex estimated EPSFs exhibit clearly pronounced jumps of magnitude
roughly 50% at C=1/2, as well as a number of additional matching
discontinuities.Comment: 12 pages, 7 figures, new abstract, revised for J. Phys.