10,889 research outputs found

    Near threshold rotational excitation of molecular ions by electron-impact

    Get PDF
    New cross sections for the rotational excitation of H3+_3^+ by electrons are calculated {\it ab initio} at low impact energies. The validity of the adiabatic-nuclei-rotation (ANR) approximation, combined with RR-matrix wavefunctions, is assessed by comparison with rovibrational quantum defect theory calculations based on the treatment of Kokoouline and Greene ({\it Phys. Rev. A} {\bf 68} 012703 2003). Pure ANR excitation cross sections are shown to be accurate down to threshold, except in the presence of large oscillating Rydberg resonances. These resonances occur for transitions with ΔJ=1\Delta J=1 and are caused by closed channel effects. A simple analytic formula is derived for averaging the rotational probabilities over such resonances in a 3-channel problem. In accord with the Wigner law for an attractive Coulomb field, rotational excitation cross sections are shown to be large and finite at threshold, with a significant but moderate contribution from closed channels.Comment: 3 figures, a5 page

    A search for clusters and groups of galaxies on the line of sight towards 8 lensed quasars

    Full text link
    In this paper we present new ESO/VLT FORS1 and ISAAC images of the fields around eight gravitationally lensed quasars: CTQ414, HE0230-2130, LBQS1009-0252, B1030+074, HE1104-1805, B1359+154, H1413+117 and HE2149-2745. When available and deep enough, HST/WFPC2 data were also used to infer the photometric redshifts of the galaxies around the quasars. The search of galaxy overdensities in space and redshift, as well as a weak-shear analysis and a mass reconstruction are presented in this paper. We find that there are most probably galaxy groups towards CTQ414, HE0230-2130, B1359+154, H1413+117 and HE2149-2745, with a mass ~ 4x10^14 M_sol h^-1. Considering its photometric redshift, the galaxy group discovered in the field around HE1104-1805 is associated with the quasar rather than with the lensing potential.Comment: 14 pages, 11 figures(.jpg

    Quasi-classical rate coefficient calculations for the rotational (de)excitation of H2O by H2

    Full text link
    The interpretation of water line emission from existing observations and future HIFI/Herschel data requires a detailed knowledge of collisional rate coefficients. Among all relevant collisional mechanisms, the rotational (de)excitation of H2O by H2 molecules is the process of most interest in interstellar space. To determine rate coefficients for rotational de-excitation among the lowest 45 para and 45 ortho rotational levels of H2O colliding with both para and ortho-H2 in the temperature range 20-2000 K. Rate coefficients are calculated on a recent high-accuracy H2O-H2 potential energy surface using quasi-classical trajectory calculations. Trajectories are sampled by a canonical Monte-Carlo procedure. H2 molecules are assumed to be rotationally thermalized at the kinetic temperature. By comparison with quantum calculations available for low lying levels, classical rates are found to be accurate within a factor of 1-3 for the dominant transitions, that is those with rates larger than a few 10^{-12}cm^{3}s^{-1}. Large velocity gradient modelling shows that the new rates have a significant impact on emission line fluxes and that they should be adopted in any detailed population model of water in warm and hot environments.Comment: 8 pages, 2 figures, 1 table (the online material (4 tables) can be obtained upon request to [email protected]

    Plasma wake inhibition at the collision of two laser pulses in an underdense plasma

    Get PDF
    An electron injector concept for laser-plasma accelerator was developed in ref [1] and [2] ; it relies on the use of counter-propagating ultrashort laser pulses. In [2], the scheme is as follows: the pump laser pulse generates a large amplitude laser wakefield (plasma wave). The counter-propagating injection pulse interferes with the pump laser pulse to generate a beatwave pattern. The ponderomotive force of the beatwave is able to inject plasma electrons into the wakefield. We have studied this injection scheme using 1D Particle in Cell (PIC) simulations. The simulations reveal phenomena and important physical processes that were not taken into account in previous models. In particular, at the collision of the laser pulses, most plasma electrons are trapped in the beatwave pattern and cannot contribute to the collective oscillation supporting the plasma wave. At this point, the fluid approximation fails and the plasma wake is strongly inhibited. Consequently, the injected charge is reduced by one order of magnitude compared to the predictions from previous models.Comment: 4 pages, 4 figure

    Many parameter Hoelder perturbation of unbounded operators

    Full text link
    If uA(u)u\mapsto A(u) is a C0,αC^{0,\alpha}-mapping, for 0<α10< \alpha \le 1, having as values unbounded self-adjoint operators with compact resolvents and common domain of definition, parametrized by uu in an (even infinite dimensional) space, then any continuous (in uu) arrangement of the eigenvalues of A(u)A(u) is indeed C0,αC^{0,\alpha} in uu.Comment: LaTeX, 4 pages; The result is generalized from Lipschitz to Hoelder. Title change

    Quasimonoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas

    Full text link
    The interaction of two laser pulses in an underdense plasma has proven to be able to inject electrons in plasma waves, thus providing a stable and tunable source of electrons. Whereas previous works focused on the "beatwave" injection scheme in which two lasers with the same polarization collide in a plasma, this present letter studies the effect of polarization and more specifically the interaction of two colliding cross-polarized laser pulses. It is shown both theoretically and experimentally that electrons can also be pre-accelerated and injected by the stochastic heating occurring at the collision of two cross-polarized lasers and thus, a new regime of optical injection is demonstrated. It is found that injection with cross-polarized lasers occurs at higher laser intensities.Comment: 4 pages, 4 figure

    Collisional excitation of singly deuterated ammonia NH2_2D by H2_2

    Get PDF
    The availability of collisional rate coefficients with H2_2 is a pre-requisite for interpretation of observations of molecules whose energy levels are populated under non local thermodynamical equilibrium conditions. In the current study, we present collisional rate coefficients for the NH2_2D / para--H2_2(J2=0,2J_2 = 0,2) collisional system, for energy levels up to Jτ=77J_\tau = 7_7 (EuE_u\sim735 K) and for gas temperatures in the range T=5300T = 5-300K. The cross sections are obtained using the essentially exact close--coupling (CC) formalism at low energy and at the highest energies, we used the coupled--states (CS) approximation. For the energy levels up to Jτ=42J_\tau = 4_2 (EuE_u\sim215 K), the cross sections obtained through the CS formalism are scaled according to a few CC reference points. These reference points are subsequently used to estimate the accuracy of the rate coefficients for higher levels, which is mainly limited by the use of the CS formalism. Considering the current potential energy surface, the rate coefficients are thus expected to be accurate to within 5\% for the levels below Jτ=42J_\tau = 4_2, while we estimate an accuracy of 30\% for higher levels

    A seven square degrees survey for galaxy-scale gravitational lenses with the HST imaging archive

    Full text link
    We present the results of a visual search for galaxy-scale gravitational lenses in nearly 7 square degrees of Hubble Space Telescope (HST) images. The dataset comprises the whole imaging data ever taken with the Advanced Camera for Surveys (ACS) in the filter F814W (I-band) up to August 31st, 2011, i.e. 6.03 square degrees excluding the field of the Cosmic Evolution Survey (COSMOS) which has been the subject of a separate visual search. In addition, we have searched for lenses in the whole Wide Field Camera 3 (WFC3) near-IR imaging dataset in all filters (1.01 square degrees) up to the same date. Our primary goal is to provide a sample of lenses with a broad range of different morphologies and lens-source brightness contrast in order estimate a lower limit to the number of galaxy-scale strong lenses in the future Euclid survey in its VIS band. Our criteria to select lenses are purely morphological as we do not use any colour or redshift information.The final candidate selection is very conservative hence leading to a nearly pure but incomplete sample. We find 49 new lens candidates: 40 in the ACS images and 9 in the WFC3 images. Out of these, 16 candidates are secure lenses owing to their striking morphology, 21 more are very good candidates, and 12 more have morphologies compatible with gravitational lensing but also compatible with other astrophysical objects. It is therefore insensitive to cosmic variance and allows to estimate the number of galaxy-scale strong lenses on the sky for a putative survey depth, which is the main result of the present work. Because of the incompleteness of the sample, the estimated lensing rates should be taken as lower limits. Using these, we anticipate that a 15 000 square degrees space survey such as Euclid will find at least 60 000 galaxy-scale strong lenses down to a limiting AB magnitude of I = 24.5 (10-sigma) or I = 25.8 (3-sigma).Comment: 13 pages, 12 figures, Accepted for publication in MNRA
    corecore