8 research outputs found

    Effect of Exchange–correlation Functionals on Ground State Geometries, Optoelectronic and Charge Transfer of Triphenylamine-based Dyes

    Get PDF
    The importance of the Density Functional Theory (DFT) calculation approach lies in their ability to provide a highly accurate prediction of structural and optoelectronic properties. However, the traditional methods of DFT failed to predict optoelectronic properties satisfactorily. Therefore, it will be necessary to examine methods containing different percentages of Hartree-Fock exchange and correlation in order to find the most suitable functionals. DFT and Time-Dependent-DFT (TD-DFT) calculations was carried out using four different functionals approximations incorporating a different amount of Hartree Fock exchange (B3LYP, BHandHLYP, CAM-B3LYP and LCωPBE), in order to evaluate their accuracies to predict the geometrical, optoelectronic and charge transfer properties of four triphenylamine-based dyes for Dye-Sensitized Solar Cells (DSSCs) applications. The functional hybrid B3LYP was the best among adopted functional that reproduced the geometrical, optoelectronic and charge transfer properties. On the other hand, it has been shown that the Hartree-Fock exchange percentage for BHandHLYP, significantly improved TD-DFT results in the case of organic dyes. Moreover, the corrected long-range functionals (CAM-B3LYP and LC-wPBE) present valuable tools for giving results of comparable precision with experimental optical data. In terms of the choice of the most appropriate functional for computational calculation, the obtained results can be useful for future DSSC applications. DOI: http://dx.doi.org/10.17807/orbital.v14i1.168

    Effect of Exchange–correlation Functionals on Ground State Geometries, Optoelectronic and Charge Transfer of Triphenylamine-based Dyes

    Get PDF
    The importance of the Density Functional Theory (DFT) calculation approach lies in their ability to provide a highly accurate prediction of structural and optoelectronic properties. However, the traditional methods of DFT failed to predict optoelectronic properties satisfactorily. Therefore, it will be necessary to examine methods containing different percentages of Hartree-Fock exchange and correlation in order to find the most suitable functionals. DFT and Time-Dependent-DFT (TD-DFT) calculations was carried out using four different functionals approximations incorporating a different amount of Hartree Fock exchange (B3LYP, BHandHLYP, CAM-B3LYP and LCωPBE), in order to evaluate their accuracies to predict the geometrical, optoelectronic and charge transfer properties of four triphenylamine-based dyes for Dye-Sensitized Solar Cells (DSSCs) applications. The functional hybrid B3LYP was the best among adopted functional that reproduced the geometrical, optoelectronic and charge transfer properties. On the other hand, it has been shown that the Hartree-Fock exchange percentage for BHandHLYP, significantly improved TD-DFT results in the case of organic dyes. Moreover, the corrected long-range functionals (CAM-B3LYP and LC-wPBE) present valuable tools for giving results of comparable precision with experimental optical data. In terms of the choice of the most appropriate functional for computational calculation, the obtained results can be useful for future DSSC applications. DOI: http://dx.doi.org/10.17807/orbital.v14i1.168

    4,4-Diphenyl-1-propyl-2-propylsulfanyl-4,5-dihydro-1H-imidazol-5-one

    No full text
    In the title molecule, C21H24N2OS, the five-membered ring is planar with an r.m.s. deviation of 0.0142 Å. The phenyl rings are inclined to the plane of the dihydroimidazolone ring by 60.81 (6) and 79.23 (6)°. In the crystal, inversion dimers are formed by a C—H...O hydrogen bond and a C—H...π(ring) interaction. Additional C—H...O hydrogen bonds and C—H...π(ring) interactions connect these dimers into chains along the c-axis direction

    Synthesis, X-ray Crystal Structure, Anticancer, Hirshfeld Surface Analysis, DFT, TD-DFT, ADMET, and Molecular Docking of 3-Phenyl-1,2,4-triazolo[3,4-h]-13,4-thiaza-11-crown-4

    No full text
    In this work, we describe the synthesis of new macrocycles derived from 3-phenyl-1,2,4-triazole-5-thione 1 in a heterogeneous medium using liquid–solid phase transfer catalysis (PTC) conditions. The structures of the two compounds (3 and 4) isolated were elucidated based on spectral data (1H-NMR, 13C-NMR) and confirmed in the case of 3-phenyl-1,2,4-triazolo [3,4-h]-13,4--thiaza-11-crown-4 (3) by a single-crystal X-ray diffraction analysis. Furthermore, the experimental spectral and the X-ray geometrical parameters were compared with their corresponding predicted ones obtained at the B3LYP/6-311++G(d,p) level of theory. The intercontacts between crystal units were investigated through Hirshfeld surface analysis. The drug-like macrocycles were predicted using ADMET and drug-likeness properties, which showed that 3 may act as an inhibitor of DNA-dependent protein kinase (DNA-PK). This assumption was confirmed by the well-binding fitting of 3 into the binding site of DNA-PK and the formation of a stable 3-DNA-PK complex with a binding energy of −7 kcal-mol−1. Finally, the anticancer activity of 3 was assessed by an MTT assay against A549 cells, which showed that 3 has moderate anticancer activity compared to that of the doxorubicin reference drug

    Nanoarchitectonics and Molecular Docking of 4-(Dimethylamino)Pyridin-1-Ium 2-3 Methyl-4-Oxo-Pyri-Do[1,2-<i>a</i>]Pyrimidine-3-Carboxylate

    No full text
    A retro-Claisen reaction of 1-(4-oxo-4H-pyrido [1,2-a]pyrimidin-3-yl)butane-1,3-dione, 3, in the presence of potassium hydroxide and 4-dimethylamino-pyridine has been carried out, leading to 4-(dimethylamino)pyridin-1-ium 2-methyl-4-oxo-pyrido [1,2-a]pyrimidine-3-carboxylate 5. A plausible mechanism explaining the formation of the title compound has been proposed. A single-crystal X-ray diffraction analysis confirms the crystal structure of the isolated organic salt (5). In the crystal, the title compound adopts a layered structure where there are stacks of cations and anions formed by slipped π-stacking interactions. These stacks are linked by regions consisting of water molecules that are hydrogen-bonded together. DFT and Hirshfeld surface analysis supported the experimental results of the molecular geometry and the intercontacts between different units in the crystal. The druglikeness, ADMET properties, and predicted targets were investigated, and the observed results suggest that 5 may act as a carbonic anhydrase I inhibitor. The assumption is confirmed by docking 5 into the active binding site of carbonic anhydrase, which shows it to have good binding affinities and to form stable complexes with the active residues of carbonic anhydrase I
    corecore