2,731 research outputs found

    Quantum cloning with an optical fiber amplifier

    Get PDF
    It has been shown theoretically that a light amplifier working on the physical principle of stimulated emission should achieve optimal quantum cloning of the polarization state of light. We demonstrate close-to-optimal universal quantum cloning of polarization in a standard fiber amplifier for telecom wavelengths. For cloning 1 --> 2 we find a fidelity of 0.82, the optimal value being 5/6 = 0.83.Comment: 4 pages, 3 figure

    High performance guided-wave asynchronous heralded single photon source

    Get PDF
    We report on a guided wave heralded photon source based on the creation of non-degenerate photon pairs by spontaneous parametric down conversion in a Periodically Poled Lithium Niobate waveguide. Using the signal photon at 1310 nm as a trigger, a gated detection process permits announcing the arrival of single photons at 1550 nm at the output of a single mode optical fiber with a high probability of 0.38. At the same time the multi-photon emission probability is reduced by a factor of 10 compared to poissonian light sources. Relying on guided wave technologies such as integrated optics and fiber optics components, our source offers stability, compactness and efficiency and can serve as a paradigm for guided wave devices applied to quantum communication and computation using existing telecom networks

    Ensemble of Hankel Matrices for Face Emotion Recognition

    Full text link
    In this paper, a face emotion is considered as the result of the composition of multiple concurrent signals, each corresponding to the movements of a specific facial muscle. These concurrent signals are represented by means of a set of multi-scale appearance features that might be correlated with one or more concurrent signals. The extraction of these appearance features from a sequence of face images yields to a set of time series. This paper proposes to use the dynamics regulating each appearance feature time series to recognize among different face emotions. To this purpose, an ensemble of Hankel matrices corresponding to the extracted time series is used for emotion classification within a framework that combines nearest neighbor and a majority vote schema. Experimental results on a public available dataset shows that the adopted representation is promising and yields state-of-the-art accuracy in emotion classification.Comment: Paper to appear in Proc. of ICIAP 2015. arXiv admin note: text overlap with arXiv:1506.0500

    An in vitro anatomic model of the human cerebral arteries with saccular arterial aneurysms

    Get PDF
    Summary: Anin vitro model of the main human cerebral arteries with or without saccular arterial aneurysms is presented. A cast of the cerebral arteries was obtained in a human specimen. Three aneurysms were simulated and added to the cast. Wax copies of the cast were produced, and embedded with liquid resin solidifying into solid blocks. After evacuation of the wax, a model consisting of a hollow reproduction of the cast within the resin block was obtained. The model is reproducible and anatomically accurate. Since it is transparent to visible light, and compatible with x-ray, magnetic resonance and transcranial doppler techniques, it should prove useful for a wide range of haemodynamic and radiologic investigations. The reported technique may be adapted to any structure with a hollow configuration, allowing for the preparation of arterial and venous models from other vascular areas, as well as models from other anatomic systems, such as the biliary or urinary tract

    Optimizing single-photon-source heralding efficiency at 1550 nm using periodically poled lithium niobate

    Full text link
    We explore the feasibility of using high conversion-efficiency periodically-poled crystals to produce photon pairs for photon-counting detector calibrations at 1550 nm. The goal is the development of an appropriate parametric down-conversion (PDC) source at telecom wavelengths meeting the requirements of high-efficiency pair production and collection in single spectral and spatial modes (single-mode fibers). We propose a protocol to optimize the photon collection, noise levels and the uncertainty evaluation. This study ties together the results of our efforts to model the single-mode heralding efficiency of a two-photon PDC source and to estimate the heralding uncertainty of such a source.Comment: 14 pages, 2 tables and 3 figures, final version accepted by Metrologi

    Inadequacies in the conventional treatment of the radiation field of moving sources

    Full text link
    There is a fundamental difference between the classical expression for the retarded electromagnetic potential and the corresponding retarded solution of the wave equation that governs the electromagnetic field. While the boundary contribution to the retarded solution for the {\em potential} can always be rendered equal to zero by means of a gauge transformation that preserves the Lorenz condition, the boundary contribution to the retarded solution of the wave equation governing the {\em field} may be neglected only if it diminishes with distance faster than the contribution of the source density in the far zone. In the case of a source whose distribution pattern both rotates and travels faster than light {\em in vacuo}, as realized in recent experiments, the boundary term in the retarded solution governing the field is by a factor of the order of R1/2R^{1/2} {\em larger} than the source term of this solution in the limit that the distance RR of the boundary from the source tends to infinity. This result is consistent with the prediction of the retarded potential that part of the radiation field generated by a rotating superluminal source decays as R1/2R^{-1/2}, instead of R1R^{-1}, a prediction that is confirmed experimentally. More importantly, it pinpoints the reason why an argument based on a solution of the wave equation governing the field in which the boundary term is neglected (such as appears in the published literature) misses the nonspherical decay of the field

    Theoretical analysis of the electronic structure of the stable and metastable c(2x2) phases of Na on Al(001): Comparison with angle-resolved ultra-violet photoemission spectra

    Full text link
    Using Kohn-Sham wave functions and their energy levels obtained by density-functional-theory total-energy calculations, the electronic structure of the two c(2x2) phases of Na on Al(001) are analysed; namely, the metastable hollow-site structure formed when adsorption takes place at low temperature, and the stable substitutional structure appearing when the substrate is heated thereafter above ca. 180K or when adsorption takes place at room temperature from the beginning. The experimentally obtained two-dimensional band structures of the surface states or resonances are well reproduced by the calculations. With the help of charge density maps it is found that in both phases, two pronounced bands appear as the result of a characteristic coupling between the valence-state band of a free c(2x2)-Na monolayer and the surface-state/resonance band of the Al surfaces; that is, the clean (001) surface for the metastable phase and the unstable, reconstructed "vacancy" structure for the stable phase. The higher-lying band, being Na-derived, remains metallic for the unstable phase, whereas it lies completely above the Fermi level for the stable phase, leading to the formation of a surface-state/resonance band-structure resembling the bulk band-structure of an ionic crystal.Comment: 11 pages, 11 postscript figures, published in Phys. Rev. B 57, 15251 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    High coherence photon pair source for quantum communication

    Full text link
    This paper reports a novel single mode source of narrow-band entangled photon pairs at telecom wavelengths under continuous wave excitation, based on parametric down conversion. For only 7 mW of pump power it has a created spectral radiance of 0.08 pairs per coherence length and a bandwidth of 10 pm (1.2 GHz). The effectively emitted spectral brightness reaches 3.9*10^5 pairs /(s pm). Furthermore, when combined with low jitter single photon detectors, such sources allow for the implementation of quantum communication protocols without any active synchronization or path length stabilization. A HOM-Dip with photons from two autonomous CW sources has been realized demonstrating the setup's stability and performance.Comment: 12 pages, 4 figure

    MyD88 and TLR9 dependent immune responses mediate resistance to Leishmania guyanensis infections, irrespective of Leishmania RNA virus burden.

    Get PDF
    Infections with Leishmania parasites of the Leishmania Viannia subgenus give rise to both localized cutaneous (CL), and metastatic leishmaniasis. Metastasizing disease forms including disseminated (DCL) and mutocutaneous (MCL) leishmaniasis result from parasitic dissemination and lesion formation at sites distal to infection and have increased inflammatory responses. The presence of Leishmania RNA virus (LRV) in L. guyanensis parasites contributes to the exacerbation of disease and impacts inflammatory responses via activation of TLR3 by the viral dsRNA. In this study we investigated other innate immune response adaptor protein modulators and demonstrated that both MyD88 and TLR9 played a crucial role in the development of Th1-dependent healing responses against L. guyanensis parasites regardless of their LRV status. The absence of MyD88- or TLR9-dependent signaling pathways resulted in increased Th2 associated cytokines (IL-4 and IL-13), which was correlated with low transcript levels of IL-12p40. The reliance of IL-12 was further confirmed in IL12AB-/- mice, which were completely susceptible to infection. Protection to L. guyanensis infection driven by MyD88- and TLR9-dependent immune responses arises independently to those induced due to high LRV burden within the parasites
    corecore