589 research outputs found

    Wideband harmonic radar detection

    Get PDF
    Radio sites consist naturally of metallic structures. Metals are always covered by an oxide film due to the metal reacting chemically with the oxygen in air. The rate of this oxide formation depends largely on the environment. Any oxide film between metallic contacts will cause non-linearity. RF currents passing through these junctions would generate harmonics. When RF signals at two frequencies fl and f2 pass-through a non-linearity they create signals at their sum and difference frequencies. These are known as 'inter-modulation products'. This generation of inter-modulation products when radio waves interact with rusty parts is called as the 'Rusty Bolt Effect'. Radio spectrum is carefully controlled for optimal usage of the available frequencies so that different services operate in well-defined frequency channels. Ofcom has set some standards for radio site engineering. This set of standards is given in the document 'MPT 1331: Code of Practice for Radio Site Engineering'. Any transmission site which is not following these codes would likely cause interference to other users. It is important that radio engineers should check the sites for their compliance with these codes. If a particular radio site is causing interference due to the rusty-bolt effect, the corroded points must be located to minimize their effect using a Harmonic Radar. A 'Harmonic Radar' is a device that illuminates a region of space with RF waves and receives the harmonics of the transmitted frequencies. The received data can then be processed to find the exact location and mobility of the points causing the generation of these harmonics. It works on the principle of radar transmitting a chirp signal and receiving harmonics of the transmitting frequency. Work is currently being carried out at the 'Centre for Communication Systems' in Durham University funded by HMGCC on the design and implementation of a novel Wideband Harmonic Radar system. The radar system would employ advanced sub-systems i.e. a suitable waveform and multiple antenna arrays processing super-resolution algorithms for angular information

    Active-Adaptive Control of Inlet Separation Using Supersonic Microjets

    Get PDF
    Flow separation in internal and external flows generally results in a significant degradation in aircraft performance. For internal flows, such as inlets and transmission ducts in aircraft propulsion systems, separation is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control it. In this research, we extended our investigation of active separation control (under a previous NASA grant) where we explored the use of microjets for the control of boundary layer separation. The geometry used for the initial study was a simple diverging Stratford ramp, equipped with arrays of microjets. These early results clearly show that the activation of microjets eliminated flow separation. Furthermore, the velocity-field measurements, using PIV, also demonstrate that the gain in momentum due to the elimination of separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very little mass flow through the microjets. Based on our initial promising results this research was continued under the present grant, using a more flexible model. This model allows for the magnitude and extent of separation as well as the microjet parameters to be independently varied. The results, using this model were even more encouraging and demonstrated that microjet control completely eliminated significant regions of flow separation over a wide range of conditions with almost negligible mass flow. Detailed studies of the flowfield and its response to microjets were further examined using 3-component PIV and unsteady pressure measurements, among others. As the results presented this report will show, microjets were successfully used to control the separation of a much larger extent and magnitude than demonstrated in our earlier experiments. In fact, using the appropriate combination of control parameters (microjet, location, angle and pressure) separation was completely eliminated for the largest separated flowfield we could generate with the present model. Separation control also resulted in a significant reduction in the unsteady pressures in the flow where the unsteady pressure field was found to be directly responsive to the state of the flow above the surface. Hence, our study indicates that the unsteady pressure signature is a strong candidate for a flow state sensor , which can be used to estimate the location, magnitude and other properties of the separated flowfield. Once better understood and properly utilized, this behavior can be of significant practical importance for developing and implementing online control

    Differential Effects of Race and Poverty on Ambulatory Care Sensitive Conditions

    Full text link
    This study is a continuation of an earlier study that examined hospitalization rates for ambulatory care sensitive (ACS) conditions, as a proxy for quality of care, and found evidence of a racial disparity among African American and White Medicare beneficiaries. The current study sought to determine whether neighborhood socioeconomic status (SES) explained this disparity. Differences in rates of ACS hospitalizations by race were assessed using Cochran-Mantel Haenszel tests and Poisson regression. Unadjusted rate ratios for ACS hospitalization for African Americans vs. Whites were found to be higher in low poverty areas (rate ratio (RR)=1.13; 95% CI (1.08, 1.17)) than in high poverty areas (RR=0.97; 95% CI (0.89, 1.05)). After controlling for various indicators of area SES in multivariate analyses race differences in ACS hospitalization rates persisted. Rural neighborhoods and those with higher percent of non-high school graduates were associated with greater risk of ACS hospitalizations

    Development of a global model for atmospheric backscatter at CO2 wavelengths

    Get PDF
    The effect of aerosol microphysical processes on the backscatter from an aerosol plume undergoing long-range atmospheric transport was studied. A numerical model which examines the effects of coagulation and sedimentation on an aerosol size distribution is under development and the initial results for a single homogeneous layer were obtained. Use was made of the SAGE/SAM II data set to study the global variation of aerosol concentration and, hence, to predict the variation of Beta sub CO2. Computer programs were written to determine the mean, median, and the probability distribution of the measured aerosol extinction as a function of altitude, latitude and geographical conditions. The first data sets analyzed in this way are under study. Data was used to study aerosol behavior over the U.S.A. and the Pacific Ocean

    SAGE 1 and SAM 2 measurements of 1 micron aerosol extinction in the free troposphere

    Get PDF
    The SAGE 1 and SAM 2 satellite sensors were designed to measure, with global coverage, the 1 micron extinction produced by the stratospheric aerosol. In the absence of high altitude cloud, similar measurements may be made for the free tropospheric aerosol. Median extinction values in the Northern Hemisphere, for altitudes between 5 and 10 km, are found to be one-half to one order of magnitude greater than values at corresponding latitudes in the Southern Hemisphere. In addition, a seasonal increase by a factor of 1.5 yields 2 is observed in both hemispheres in local spring and summer. Following major volcanic eruptions, a long-lived enhancement of the aerosol extinction is observed for altitudes above 5 km

    Active control of Boundary Layer Separation & Flow Distortion in Adverse Pressure Gradient Flows via Supersonic Microjets

    Get PDF
    Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control this flow separation. In particular, the use of supersonic microjets as a means of controlling boundary layer separation was explored. The geometry used for the early part of this study was a simple diverging Stratford ramp, equipped with arrays of supersonic microjets. Initial results, based on the mean surface pressure distribution, surface flow visualization and Planar Laser Scattering (PLS) indicated a reverse flow region. We implemented supersonic microjets to control this separation and flow visualization results appeared to suggest that microjets have a favorable effect, at least to a certain extent. However, the details of the separated flow field were difficult to determine based on surface pressure distribution, surface flow patterns and PLS alone. It was also difficult to clearly determine the exact influence of the supersonic microjets on this flow. In the latter part of this study, the properties of this flow-field and the effect of supersonic microjets on its behavior were investigated in further detail using 2-component (planar) Particle Image Velocimetry (PIV). The results clearly show that the activation of microjets eliminated flow separation and resulted in a significant increase in the momentum of the fluid near the ramp surface. Also notable is the fact that the gain in momentum due to the elimination of flow separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very little mass flow through the microjets

    Development of a global model for atmospheric backscatter at CO2 wavelengths

    Get PDF
    The variation of the aerosol backscattering at 10.6 micrometers within the free troposphere was investigated and a model to describe this variation was developed. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets used were obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series, and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained that describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season

    Allelopathic potential of Anagalis arvensis L.

    Get PDF
    Anagalis arvensis L. (Primulaceae) is a common cultivating weed, forming dense populations of undergrowth in warm and temperate regions of Pakistan. Allelopathic studies with aqueous extracts from whole plant including leaves, flowers, shoot and roots; litter and mulch in various experiments invariably reduced the germination, plumule growth, radical growth, number of seminal roots, cell size, and fresh and dry weights of two wheat varieties namely, Ghaznavi and Uqab, which were used as the test species. Phytotoxicity of extracts depended on the amount and soaking duration. Generally, the extracts obtained after 48 h soaking and the hot water extracts were more inhibitory. Addition of litter and mulch also proved inhibitory in the experiments. Our work suggested that A. arvensis had strong allelopathic potential but must further be tested for its weedicidal and insecticidal activities. From the practical view point, the identification of weeds with potential pool of allelochemicals, screening and identification of the toxic principle, assessment of their adverse effects on germination of crops during early growth stages and finally on the commercial yield is highly recommended.Keywords: Anagalis arvensis L. (Primulaceae), allelopathic, extracts, wee

    Development of global model for atmospheric backscatter at CO2 wavelengths

    Get PDF
    The improvement of an understanding of the variation of the aerosol backscattering at 10.6 micron within the free troposphere and the development model to describe this was undertaken. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets are obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained, which describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season. Most data are available and greatest consistency is found inside the Northern Hemisphere

    Silent and Efficient Supersonic Bi-Directional Flying Wing

    Get PDF
    The supersonic bi-directional (SBiDir) flying wing (FW) concept has a great potential to achieve low sonic boom with high supersonic aerodynamic performance due to removal of performance conflict between high speed and low speed by rotating goo in flight. This NIAC Phase 1 research has achieved three objectives: 2) prove the concept based on simulation that it can achieve very low boom with smooth Sine wave ground over-pressure signature and excellent aerodynamic efficiency; 3) conduct trade study to correlate the geometric parameters with sonic boom and aerodynamic performance for further automated design optimization in Phase II. The design methodology developed in Phase I includes three parts: 1) an advanced geometry model, which can vary airfoil meanline angle distribution to control the expansion and shock waves on the airplane surface to mitigate sonic boom and improve aerodynamic efficiency. 2) a validated CFD procedure to resolve near field flow with accurate shock strength. The sonic boom propagation from near field to far field ground is simulated by NASA NF Boom code. The surface friction drag prediction is based on fiat plate correlation adopted by Seebass and supported by the experimental study of Winter and Smith, which is on the conservative side and is more reliable than CFD RANS simulation. 3) a mission analysis tool based on Corke's model that provides design requirements and constraints of supersonic airplanes for range, payload, volume, size, weight, etc. The design mission target is a supersonic transport with cruise Mach number 1.6, 100 passengers, and 4000nm range. The trade study has several very important findings: 1) The far field ground sonic boom signature is directly related to the smoothness of the flow on the airplane surface. The meanline angle distribution is a very effective control methodology to mitigate surface shock and expansion wave strength, and mitigating compression wave coalescing by achieving smooth loading distribution chord-wise. Compared with a linear meanline angle distribution, a design using nonlinear and non-monotonic meanline angle distribution is able to reduce the sonic boom ground loudness by over 20dBP1. The design achieves sonic boom ground loudness less than 70dBP1 and aerodynamic dynamic efficiency 1/D of 8.4. 2) Decreasing sweep angle within the Mach cone will increase 1/D as well as sonic boom. A design with variable sweep from 84 at the very leading edge to 68 at the tip achieves an extraordinarily high 1/D of 10.4 at Mach number 1.6 due to the low wave drag. If no sonic boom constraint is attached, SBiDir-FW concept still has a lot of room to increase the 1/D. 3) The round leading edge and trailing edge under high sweep angle are beneficial to improve aerodynamic performance, sonic boom, and to increase volume of the airplane. 4) Subsonic performance is benefited greatly from the high slenderness of supersonic configuration after rotating goo. A design with excellent supersonic aspect ratio of 0.44, 1/D of 8.g, gives an extraordinary subsonic aspect ration of 10 and 1/D of 1g.7. Two configurations are designed in details to install internal seats, landing gears, and engine installation to demonstrate the feasibility of SBiDir-FW configuration to accommodate all the required volume for realistic airplane. Here we emphasize that the qualitative findings in Phase I are very encouraging, more important than the quantitative results. Qualitative findings give the understanding of physics and provide the path to achieve the ultimate high performance design. The promising quantitative results achieved in Phase I need to be confirmed by wind tunnel testing in Phase II and ultimately proved by flight test. The other important step forward will be made to study the rotation transition from both CFD unsteady simulation and wind tunnel testing
    • …
    corecore