9,537 research outputs found
Simplified methods for calculating photodissociation rates
Simplified methods for calculating the transmission of solar UV radiation and the dissociation coefficients of various molecules are compared. A significant difference sometimes appears in calculations of the individual band, but the total transmission and the total dissociation coefficients integrated over the entire SR (solar radiation) band region agree well between the methods. The ambiguities in the solar flux data affect the calculated dissociation coefficients more strongly than does the method. A simpler method is developed for the purpose of reducing the computation time and computer memory size necessary for storing coefficients of the equations. The new method can reduce the computation time by a factor of more than 3 and the memory size by a factor of more than 50 compared with the Hudson-Mahle method, and yet the result agrees within 10 percent (in most cases much less) with the original Hudson-Mahle results, except for H2O and CO2. A revised method is necessary for these two molecules, whose absorption cross sections change very rapidly over the SR band spectral range
Investigating slim disk solutions for HLX-1 in ESO 243-49
The hyper luminous X-ray source HLX-1 in the galaxy ESO 243-49, currently the
best intermediate mass black hole candidate, displays spectral transitions
similar to those observed in Galactic black hole binaries, but with a
luminosity 100-1000 times higher. We investigated the X-ray properties of this
unique source fitting multi-epoch data collected by Swift, XMM-Newton & Chandra
with a disk model computing spectra for a wide range of sub- and
super-Eddington accretion rates assuming a non-spinning black hole and a
face-on disk (i = 0 deg). Under these assumptions we find that the black hole
in HLX-1 is in the intermediate mass range (~2 x 10^4 M_odot) and the accretion
flow is in the sub-Eddington regime. The disk radiation efficiency is eta =
0.11 +/-0.03. We also show that the source does follow the L_X ~ T^4 relation
for our mass estimate. At the outburst peaks, the source radiates near the
Eddington limit. The accretion rate then stays constant around 4 x 10^(-4)
M_odot yr^(-1) for several days and then decreases exponentially. Such
"plateaus" in the accretion rate could be evidence that enhanced mass transfer
rate is the driving outburst mechanism in HLX-1. We also report on the new
outburst observed in August 2011 by the Swift-X-ray Telescope. The time of this
new outburst further strengthens the ~1 year recurrence timescale.Comment: 24 pages, 10 figures, accepted for publication in Ap
Local Eigenvalue Density for General MANOVA Matrices
We consider random n\times n matrices of the form
(XX*+YY*)^{-1/2}YY*(XX*+YY*)^{-1/2}, where X and Y have independent entries
with zero mean and variance one. These matrices are the natural generalization
of the Gaussian case, which are known as MANOVA matrices and which have joint
eigenvalue density given by the third classical ensemble, the Jacobi ensemble.
We show that, away from the spectral edge, the eigenvalue density converges to
the limiting density of the Jacobi ensemble even on the shortest possible
scales of order 1/n (up to \log n factors). This result is the analogue of the
local Wigner semicircle law and the local Marchenko-Pastur law for general
MANOVA matrices.Comment: Several small changes made to the tex
Lattice thermal conductivity of disordered NiPd and NiPt alloys
Numerical calculations of lattice thermal conductivity are reported for the
binary alloys NiPd and NiPt. The present work is a continuation of an earlier
paper by us [PRB, 72, 214207 (2005)]which had developed a theoretical framework
for the calculation of configuration-averaged lattice thermal conductivity and
thermal diffusivity in disordered alloys. The formulation was based on the
augmented space theorem combined with a scattering diagram technique. In this
paper we shall show dependence of the lattice thermal conductivity on a series
of variables like phonon frequency, temperature and alloy composition. The
temperature dependence of and its realtion to the measured thermal
conductivity is discussed. The concentration dependence of appears to
justify the notion of a minimum thermal conductivity as discussed by Kittel,
Slack and others. We also study the frequency and composition dependence of the
thermal diffusivity averaged over modes. A numerical estimate of this quantity
gives an idea about the location of mobility edge and the fraction of states in
the frequency spectrum which is delocalized.Comment: 23 pages, 18 figure
Target Suitability and the Crime Drop
The initial focus of Felson’s routine activity perspective was the crime increases of the 1960s and 1970s that were largely a function of inadvertent changes in everyday life (Cohen & Felson, 1979). The rise in crime was an unintended side effect of developments in technology, transportation, and domestic life that were widely welcomed. More money, more consumer goods, more labour-saving devices, more transport, and more employment opportunities for women, for example, all brought benefits to citizens, but they also created more crime opportunities and hence sustained increases in crime
Ion Trap Mass Spectrometers for Identity, Abundance and Behavior of Volatiles on the Moon
NASA GSFC and The Open University (UK) are collaborating to deploy an Ion Trap Mass Spectrometer on the Moon to investigate the lunar water cycle. The ITMS is flight-proven throughthe Rosetta Philae comet lander mission. It is also being developed under ESA funding to analyse samples drilled from beneath the lunar surface on the Roscosmos Luna-27 lander (2025).Now, GSFC and OU will now develop a compact ITMS instrument to study the near-surface lunar exosphere on board a CLPS Astrobotic lander at Lacus Mortis in 2021
The Discharging of Roving Objects in the Lunar Polar Regions
In 2007, the National Academy of Sciences identified the lunar polar regions as special environments: very cold locations where resources can be trapped and accumulated. These accumulated resources not only provide a natural reservoir for human explorers, but their very presence may provide a history of lunar impact events and possibly an indication of ongoing surface reactive chemistry. The recent LCROSS impacts confirm that polar crater floors are rich in material including approx 5%wt of water. An integral part of the special lunar polar environment is the solar wind plasma. Solar wind protons and electrons propagate outward from the Sun, and at the Moon's position have a nominal density of 5 el/cubic cm, flow speed of 400 km/sec, and temperature of 10 eV (approx. equal 116000K). At the sub-solar point, the flow of this plasma is effectively vertically incident at the surface. However, at the poles and along the lunar terminator region, the flow is effectively horizontal over the surface. As recently described, in these regions, local topography has a significant effect on the solar wind flow. Specifically, as the solar wind passes over topographic features like polar mountains and craters, the plasma flow is obstructed and creates a distinct plasma void in the downstream region behind the obstacle. An ion sonic wake structure forms behind the obstacle, not unlike that which forms behind a space shuttle. In the downstream region where flow is obstructed, the faster moving solar wind electrons move into the void region ahead of the more massive ions, thereby creating an ambipolar electric field pointing into the void region. This electric field then deflects ion trajectories into the void region by acting as a vertical inward force that draws ions to the surface. This solar wind 'orographic' effect is somewhat analogous to that occurring with terrestrial mountains. However, in the solar wind, the ambipolar E-field operating in the collision less plasma replaces the gradient in pressure that would act in a collisional neutral gas. Human systems (roving astronauts or robotic systems created by humans) may be required to gain access to the crater floor to collect resources such as water and other cold-trapped material. However, these human systems are also exposed to the above-described harsh thermal and electrical environments in the region. Thus, the objective of this work is to determine the nature of charging and discharging for a roving object in the cold, plasma-starved lunar polar regions. To accomplish this objective, we first define the electrical charging environment within polar craters. We then describe the subsequent charging of a moving object near and within such craters. We apply a model of an astronaut moving in periodic steps/cadence over a surface regolith. In fact the astronaut can be considered an analog for any kind of moving human system. An astronaut stepping over the surface accumulates charge via contact electrification (tribocharging) v.lith the lunar regolith. We present a model of this tribo-charge build-up. Given the environmental plasma in the region, we determine herein the dissipation time for the astronaut to bleed off its excess charge into the surrounding plasma
Whooping crane use of riverine stopover sites
Migratory birds like endangered whooping cranes (Grus americana) require suitable nocturnal roost sites during twice annual migrations. Whooping cranes primarily roost in shallow surface water wetlands, ponds, and rivers. All these features have been greatly impacted by human activities, which present threats to the continued recovery of the species. A portion of one such river, the central Platte River, has been identified as critical habitat for the survival of the endangered whooping crane. Management intervention is now underway to rehabilitate habitat form and function on the central Platte River to increase use and thereby contribute to the survival of whooping cranes. The goal of our analyses was to develop habitat selection models that could be used to direct riverine habitat management activities (i.e., channel widening, tree removal, flow augmentation, etc.) along the central Platte River and throughout the species’ range. As such, we focused our analyses on two robust sets of whooping crane observations and habitat metrics the Platte River Recovery Implementation Program (Program or PRRIP) and other such organizations could influence. This included channel characteristics such as total channel width, the width of channel unobstructed by dense vegetation, and distance of forest from the edge of the channel and flow-related metrics like wetted width and unit discharge (flow volume per linear meter of wetted channel width) that could be influenced by flow augmentation or reductions during migration. We used 17 years of systematic monitoring data in a discrete-choice framework to evaluate the influence these various metrics have on the relative probability of whooping crane use and found the width of channel unobstructed by dense vegetation and distance to the nearest forest were the best predictors of whooping crane use. Secondly, we used telemetry data obtained from a sample of 38 birds of all ages over the course of seven years, 2010–2016, to evaluate whooping crane use of riverine habitat within the North-central Great Plains, USA. For this second analysis, we focused on the two metrics found to be important predictors of whooping crane use along the central Platte River, unobstructed channel width and distance to nearest forest or wooded area. Our findings indicate resource managers, such as the Program, have the potential to influence whooping crane use of the central Platte River through removal of in-channel vegetation to increase the unobstructed width of narrow channels and through removal of trees along the bank line to increase unforested corridor widths. Results of both analyses also indicated that increases in relative probability of use by whooping cranes did not appreciably increase with unobstructed views 200 m wide and unforested corridor widths that were 330 m. Therefore, managing riverine sites for channels widths \u3e200 m and removing trees beyond 165 m from the channel’s edge would increase costs associated with implementing management actions such as channel and bank-line disking, removing trees, augmenting flow, etc. without necessarily realizing an additional appreciable increase in use by migrating whooping cranes
- …