54 research outputs found

    Impact of biodiversity loss on production in complex marine food webs mitigated by prey-release

    Get PDF
    T.F. is being supported by the National University of Singapore grant WBS R-154-000-551-133. In addition, T.F., K.D.F., D.G.R. and A.G.R. acknowledge funding from a Beaufort Marine Research Award, carried out under the Sea Change Strategy and the Strategy for Science Technology and Innovation (2006–2013), with the support of the Marine Institute, funded under the Marine Research Sub-Programme of the Irish National Development Plan 2007–2013. T.F. also acknowledges funding by a Sir Walter William Adrian MacGeough Bond Post-PhD Publication Support Fellowship. Furthermore, A.G.R. acknowledges funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreements no. 289257 (MYFISH) and no. 308392 (DEVOTES). Last, A.G.R. acknowledges funding from the UK Department of Environment, Food and Rural Affairs (M1228)

    Melt Inclusion Vapour Bubbles: The Hidden Reservoir for Major and Volatile Elements

    Get PDF
    Olivine-hosted melt inclusions (MIs) provide samples of magmatic liquids and their dissolved volatiles from deep within the plumbing system. Inevitable post-entrapment modifications can lead to significant compositional changes in the glass and/or any contained bubbles. Re-heating is a common technique to reverse MI crystallisation; however, its effect on volatile contents has been assumed to be minor. We test this assumption using crystallised and glassy basaltic MIs, combined with Raman spectroscopy and 3D imaging, to investigate the changes in fluid and solid phases in the bubbles before and after re-heating. Before re-heating, the bubble contains CO2 gas and anhydrite (CaSO4) crystallites. The rapid diffusion of major and volatile elements from the melt during re-heating creates new phases within the bubble: SO2, gypsum, Fe-sulphides. Vapour bubbles hosted in naturally glassy MIs similarly contain a plethora of solid phases (carbonates, sulphates, and sulphides) that account for up to 84% of the total MI sulphur, 80% of CO2, and 14% of FeO. In both re-heated and naturally glassy MIs, bubbles sequester major and volatile elements that are components of the total magmatic budget and represent a “loss” from the glass. Analyses of the glass alone significantly underestimates the original magma composition and storage parameters

    Managing childhood fever and pain – the comfort loop

    Get PDF
    Parents can transmit their anxiety to their child, and just as children can pick up on parental anxiety, they can also respond to a parent's ability to stay calm in stressful situations. Therefore, when treating children, it is important to address parental anxiety and to improve their understanding of their child's ailment. Parental understanding and management of both pain and fever – common occurrences in childhood – is of utmost importance, not just in terms of children's health and welfare, but also in terms of reducing the economic burden of unnecessary visits to paediatric emergency departments. Allaying parental anxiety reduces the child's anxiety and creates a positive feedback loop, which ultimately affects both the child and parent

    Science Priorities for Seamounts: Research Links to Conservation and Management

    Get PDF
    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal “proxies”, and ecological risk assessment

    Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach

    Full text link

    Non-competitive phenotypic differences can have a strong effect on ideal free distributions

    No full text
    1. We present a model of the ideal free distribution (IFD) where differences between phenotypes other than those involved in direct competition for resources are considered. We show that these post-acquisitional differences can have a dramatic impact on the predicted distributions of individuals. 2. Specifically, we predict that, when the relative abilities of phenotypes are independent of location, there will be a continuum of mixed evolutionarily stable strategy (ESS) distributions (where all phenotypes are present in all patches). 3. When the relative strengths of the post-acquisitional trait in the two phenotypes differ between patches, however, we predict only a single ESS at equilibrium. Further, this distribution may be fully or partially segregated (with the distribution of at least one phenotype being spatially restricted) but it will never be mixed. 4. Our results for post-acquisitional traits mirror those of Parker (1982) for direct competitive traits. This comparison illustrates that it does not matter whether individual differences are expressed before or after competition for resources, they will still exert considerable influence on the distribution of the individuals concerned
    corecore