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Abstract

Background: Organisms that need to perform multiple tasks face a fundamental tradeoff: no design can be
optimal at all tasks at once. Recent theory based on Pareto optimality showed that such tradeoffs lead to a highly
defined range of phenotypes, which lie in low-dimensional polyhedra in the space of traits. The vertices of these
polyhedra are called archetypes- the phenotypes that are optimal at a single task. To rigorously test this theory
requires measurements of thousands of species over hundreds of millions of years of evolution. Ammonoid fossil
shells provide an excellent model system for this purpose. Ammonoids have a well-defined geometry that can
be parameterized using three dimensionless features of their logarithmic-spiral-shaped shells. Their evolutionary
history includes repeated mass extinctions.

Results: We find that ammonoids fill out a pyramid in morphospace, suggesting five specific tasks - one for each
vertex of the pyramid. After mass extinctions, surviving species evolve to refill essentially the same pyramid, suggesting
that the tasks are unchanging. We infer putative tasks for each archetype, related to economy of shell material, rapid
shell growth, hydrodynamics and compactness.

Conclusions: These results support Pareto optimality theory as an approach to study evolutionary tradeoffs, and
demonstrate how this approach can be used to infer the putative tasks that may shape the natural selection of
phenotypes.
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Background
Organisms that need to perform multiple tasks face a
fundamental tradeoff: no phenotype can be optimal at
all tasks [1-8]. This tradeoff situation is reminiscent of
tradeoffs in economics and engineering. These fields
analyze tradeoffs using Pareto optimality theory [9-13].
Pareto optimality was recently used in biology to study
tradeoffs in evolution [2,5-8,14]. In contrast to the clas-
sic fitness-landscape approaches in which organisms
maximize a single fitness function [15], the Pareto approach
deals with several performance functions, one for each task,
that all contribute to fitness (Figure 1A-B).
Pareto theory makes strong predictions on the range

of phenotypes that evolve in such a multiple-objective
situation: the evolved phenotypes lie in a restricted part
of trait-space, called the Pareto front. The Pareto front
is defined as phenotypes that are the best possible
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compromises between the tasks; phenotypes on the
Pareto front can’t be improved at all tasks at once. Any
improvement in one task comes at the expense of other
tasks.
Shoval et al. [14] calculated the shape of the Pareto

front in trait space under a set of general assumptions.
Evolved phenotypes were predicted to lie in a polygon or
polyhedron in trait space, whose vertices are extreme
morphologies, called archetypes, which are each optimal
at one of the tasks (Figure 1B-D). Thus, two tasks lead
to phenotypes on a line that connects the two archetypes,
three tasks to a triangle, four tasks to a tetrahedron and so
on (Figure 1E). These polyhedra can have slightly curved
edges in some situations [16]. One does not need to know
the tasks in advance: tasks can be inferred from the data,
by considering the organisms closest to each archetype.
This theory can be rejected in principle by datasets which
lie in a cloud without sharp vertices, and hence do not fall
into well-defined polygons.
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Figure 1 An overview of Pareto theory for evolutionary tradeoffs. (A) The classical viewpoint of a fitness landscape: phenotypes are
arranged along the slopes near the peak of a fitness hill maximum. (B) In contrast, the Pareto viewpoint suggests a tradeoff between tasks. For
each task there is a performance function, which is maximal at a point known as the archetype for that task. The fitness function in each niche is
a combination of the different performance functions (in general, fitness is an increasing function of performances, possibly a nonlinear function).
(C) Optimality in a niche in which task 1 is most important, is achieved near archetype 1 (red maximum). Optimality in a niche in which all tasks
are equally important, is achieved close to the middle of the Pareto front (green maximum). (D) The entire Pareto front- the set of maxima of all
possible fitness functions that combine these performances- is contained within the convex hull of the archetypes. (E) Different numbers of tasks
give various polygons or polyhedra, generally known as polytopes. Two tasks lead to a suite of variation along a line segment. Three tasks lead to
a suite of variation on the triangle whose vertices are the three archetypes. Four archetypes form a tetrahedron. This is true while there are
enough traits measured: in lower dimensional trait spaces one finds projections of these polytopes.
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The Shoval et al. theory has been applied so far to
datasets from animal morphology [14,17], bacterial gene
expression [14,18], cancer [19], biological circuits [20] and
animal behavior [21]. In all of these cases, multi-
dimensional trait data was found to be well described by
low-dimensional polygons or polyhedra (lines, triangles,
tetrahedrons). Tasks were inferred based on the properties
of the organisms (or data-points) closest to the vertices.
An algorithm for detecting polyhedra in biological data
and inferring tasks was recently presented [19].
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However, some of the fundamental predictions of
the theory have not been tested yet. The theory predicts
that as long as the tasks stay more-or-less constant, for
example dictated by biomechanical constraints, the
vertices of the polygon also do not change. Moreover,
the polygons in the theory are not necessarily due to
phylogenetic history, but rather to convergent evolution
to Pareto-optimal solutions. Thus, for example, after a
mass extinction which removes most of the species from
a class [22,23], survivor species are predicted to evolve to
re-fill the same polygon as their ancestors [22,24].
To test these predictions requires a class of organisms

evolving over geological timescales, with mass extinctions,
and whose geometry is well-defined and can be linked to
function. An excellent model system for this purpose is
ammonoid fossil shells.
Ammonoids were a successful and diverse group of

species, which lived in the seas from 400 to 65 million
years ago (mya). Ammonoid shells can be described by a
morphospace defined by three geometrical parameters,
defined in the pioneering work of David Raup (Figure 2)
[15,25,26]. In this morphospace, the outer shell is a loga-
rithmic spiral, whose radius grows with each whorl by a
factor W, the whorl expansion rate. There is a constant ra-
tio between the inner and outer shell radii, denoted D.
Finally, the shell cross section can range from circular
to elliptical, as described by S, the third parameter.
Raup’s W-D-S parameterization can be robustly measured
from fossils [26] although the coiling axis changes
throughout ontogeny and thus, the coiling axis is some-
times difficult to exactly locate in actual specimens
[27,28]. It has been the setting for extensive research on
ammonoid morphology and evolution [22,29-32], as well
as the morphology of other shelled organisms [33,34].
Plotting each genus of ammonoids as a point in

this morphospace, ignoring coiling axis changes, Raup
discovered that most of the theoretical morphospace is
Figure 2 Raup morphospace coordinates. Ammonoid shell
morphology can be described by three dimensionless geometrical
parameters: W, the whorl expansion rate, is defined by a/b in the
figure. D, the internal to external shell ratio, is x/a. S, the opening
shape parameter, is y/z. The shell diameter can also be related to
the parameters in this figure as shown.
empty: many possible shell forms are not found. The
existing forms lie in a roughly triangular region in
the W-D plane (Figure 3A). One reason for this dis-
tribution is geometric constraints. Researchers have
suggested that ammonoids tend to lie to the left of
the hyperbola W= 1/D [15,26], because beyond this curve
shells are gyroconic (shells with non-overlapping whorls)
(Figure 3A upper right corner). Such gyroconic shells are
mechanically weaker and less hydrodynamically favorable
[35,36]. It is noteworthy, however, that shells to the right
of the curve do exist in nature, for example in the Bactri-
tida or Orthocerida lineages, which are probably ancestral
to the ammonoids (Figure 3B, top right) [37-40], as well as
in heteromorph ammonoids that occasionally occur in the
Mesozoic and more commonly in the Cretaceous. Thus
the W= 1/D curve is unlikely to be an absolute geometric
constraint (for more evidence, see Additional file 1).
Studies in recent years have considered a larger dataset

of ammonoids than Raup [22,29,30]. Work, Saunders
and Nikolaeva [22] show that after each mass extinction,
ammonoid genera refill the same roughly triangular
morphospace [24]. The repeated convergence to the
same suite of variation raises the question of the relation
between ammonoid morphology and function. Most
studies hypothesize a fitness function, which has an
optimum in the middle of the triangular region [15,35,36]
(Figure 1A). The fitness function is often taken to be domi-
nated by hydrodynamic drag; this assumption is compelling
since the contours of hydrodynamic efficiency, experimen-
tally measured by Chamberlain [35], show peaks at posi-
tions close to the most densely occupied regions of
morphospace [15]. The ammonoid genera are assumed to
also occupy the slopes that descend from the fitness peaks,
until bounded by the geometric constrains [15].
Interestingly, Raup did not espouse the idea of a

single task (such as hydrodynamic efficiency) dominat-
ing fitness, but rather noted that multiple tasks might
be at play [26]. In every niche, different tasks become
important, leading to niche-dependent fitness functions
with different maxima (Figure 1B-D). The idea of mul-
tiple tasks was elegantly employed by Westermann
[42], who described ammonoid morphospace by map-
ping it to a triangle. At the vertices are three ‘end mem-
ber’ morphologies which correspond to three lifestyles.
Each morphology is mapped to a point in the triangle,
which is interpreted as portraying the relative distance
from the end members and hence the relative weights of
the three lifestyles. The Westermann morphospace was
useful in comparing different datasets and in interpreting
ammonoid lifestyles [43,44]. The main drawback of the
Westermann morphospace is that, because it involves
nonlinear dimensionality reduction, different morpholo-
gies can be mapped to the same point, and in some cases
slight differences in shape can lead to large differences
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Figure 3 Ammonoids repeatedly filled the same triangle in D-W plane after mass extinctions. (A) All of the ammonoid data used in the
present study. Red points are genera before the FF (first) mass extinction, genera after FF are denoted by blue points. The green curve is W = 1/D.
(B) Ammonoids before the FF extinction, together with a schematic arrow for the direction of evolution from ancestral taxa. (C) Genera between
FF and DM mass extinctions fill out a triangle (obtained by applying the SISAL algorithm [41] on the dataset), surviving genera from the FF mass
extinction are denoted by red bold points. (D) Ammonoids between DM and PT mass extinctions fill a triangle, surviving genera from the DM
mass extinction are denoted by red bold points. (E) Ammonoids after the PT mass extinction fill a triangle, surviving genera from the PT mass
extinction are denoted by red bold points. (F) Ammonoids from different periods, together, genera between FF and DM are denoted blue, DM to
PT in red and post PT in green. The shell morphologies of the three archetypes at the vertices of the triangle are shown.
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in the Westermann projection. Thus, it is of interest to
seek a relation between shape and tasks without such
drawbacks.
To address this, we explore evolutionary tradeoffs

between tasks in the framework of Pareto optimality
theory, to quantitatively explain the suite of variation in
direct morphospace (without dimensionality reduction),
and to infer the putative tasks at play. We find that
ammonoid morphology in the W-D-S morphospace falls
within a square pyramid, suggesting five tasks. The
triangular region observed by Raup is the projection of
this pyramid on the W-D plane, and the Westermann
morphospace is a dimensionality reduction of the three-
dimensional pyramid to a two-dimensional triangle. We
propose putative tasks whose performance contours
jointly lead to the observed suite of variations, including
hydrodynamic efficiency, shell economy, compactness
and rapid shell growth. The position of each species in
this pyramid, namely its distance from each vertex, indi-
cates the relative importance of each task in the niche
in which that species evolved. After the FF and DM
mass extinctions (Fransian/Femennian and Devonian/
Missisipian 372 and 359 mya), surviving ammonoids
refill essentially the same pyramid. After the PT extinc-
tion (Permian/Triassic 252 mya), part of the pyramid is
refilled. These findings lend support to the Pareto the-
ory of evolutionary tradeoffs in the context of evolution
on geological timescales.
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Results
Ammonoid distributions in the W-D plane converge to a
similar triangle after major extinctions
We begin by considering ammonoid morphology in
the W-D plane, and later consider the three dimensional
W-D-S space (Figure 3). We combine the data of Saunders,
Work and Nikolaeva [22] for Paleozoic ammonoids (598
genera, before the PT mass extinction- for extinction
timeline see Figure 3 lower panel), with the data of
McGowan [29] for Mesozoic ammonoids (392 genera,
after PT). The data is classified into three sets between
mass extinctions: from FF to DM (113 genera, Figure 3C),
from DM to PT (386 genera, Figure 3D), and after PT
(392 genera, Figure 3E).
We tested whether the ammonoid distribution in each

set falls in a triangle more closely than randomized data,
based on the statistical test of [14]. We use an archetype
analysis algorithm (SISAL) [45] to find triangles, which
enclose as much of the data as possible. We find that a
triangle describes each dataset much better than ran-
domized datasets in which the W and D coordinates
are randomly permuted (see Methods). Randomized
data rarely fill out a triangle as well as the real data (p =
0.02 for FF-DM data and p = 0.01 for the DM-PT and post
PT sets).
We next tested how similar the triangles are for the

three datasets. We computed the ratio between the
intersection area of the triangles to the union area as a
measure for triangle similarity. The three triangles show
large ratios of intersection to union area (0.84, 0.74 and
0.71 for the (FF-DM, DM-PT), (FF-DM, post PT) and
(DM-PT, post PT) pairs respectively, p <10-4 compared to
randomly generated triangles, see Methods), indicating that
the triangles are very similar.
We conclude that after each extinction, ammonoids

re-populate essentially the same triangular region. The
vertices of the triangle describing the joint dataset of
ammonoids after FF (Figure 3F) are
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D�
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We next ask which tasks might relate to each of the

vertices.

Economy of shell material may determine the first
archetype
Raup [26] suggested that a possible need of the ammonoids
is to maximize their internal volume relative to shell
volume. This is important if shell production is costly, and
also in terms of buoyancy considerations. Ammonoids are
thought to achieve neutral buoyancy by balancing shell
weight with buoyancy from their air-filled chambers; high
internal volume relative to shell material extends the range
over which neutral buoyancy can be reached [46,47].
To calculate shell material relative to internal volume

at each point in morphospace, we follow Raup and
assume that shell thickness is a fixed fraction of radius,
namely thickness/radius = 0.077, as measured by [47].
Interestingly, this ratio is close to the optimal ratio of
thickness/radius =0.07 from calculations of mechanical
strength in tube-like bones [4]. We improve slightly on
Chamberlin and Raup’s original calculation [48] by
numerically evaluating the necessary integrals rather
than using the analytical approximations of [49] (see
Methods), yielding corrections of about 10%.
The maximum of internal volume relative to shell

thickness occurs at (D1,W1) = (0.67, 1). This point is close
to archetype one D�

1;W
�
1

� � ¼ 0:7; 1:35ð Þ: The calculated
contours of internal volume relative to shell thickness-
namely the performance contours of the task of economy-
have a curving ridge that points towards the third
archetype (Figure 4A). Performance drops sharply on
either side of this ridge.

The second archetype may optimize hydrodynamics
We conjecture that the second archetype maximizes the
hydrodynamic efficiency of the ammonoids. Low drag is
important for ammonoids in order to swim rapidly.
Hydrodynamic efficiency is measured by the drag coeffi-
cient, which is a dimensionless number specific to each
geometrical shape.
The drag coefficient is proportional to the force which

should be applied in order to keep an object of a given
surface area moving at a given velocity in water. Drag
coefficients were measured by Chamberlain [36] using
plexiglass models of shells [50].
The contours of hydrodynamic efficiency are shown in

Figure 4B. Drag monotonically increases with D and W,
hence we can conclude that the ammonoid morphology
with minimal drag has the lowest possible values of D
and W, namely (D2, W2) = (0, 1) This is close to the
second vertex of the triangle, archetype two at
D�

2;W
�
2

� � ¼ 0:003; 1:04ð Þ.

The third archetype may optimize rapid shell growth
The remaining vertex of the triangle, archetype 3, has a
large value of W. Thus the shell radius at this vertex
increases rapidly with each revolution of the spiral
(evolute morphology). There are different possible
tasks that might relate to large W, including rapid
growth, shell-orientation and swimming capabilities.
In Westermann morphospace, large W compared to D
and S is interpreted as nektonic (actively swimming).
Here, we wish to demonstrate an essential approach, and



Figure 4 The performance contours of the three putative tasks for ammonoid shells. (A) Contours for shell economy, defined as the ratio of
internal volume to shell volume, with red denoting high values, and blue low values. For gyroconic shells (non-overlapping whorls), this performance
function becomes constant, and equal to the lowest contour shown (deep blue). The triangle encapsulating the entire ammonoid dataset is shown in
black. (B) Contours for the drag coefficient measured by Chamberlain [36], red lines denote lower drag or better hydrodynamics. (C) Contours for the
growth function defined in the main text, red lines denote quicker growth. (D) The contours of the three tasks give rise to a suite of variation denoted
by blue points.
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thus focus on one of these potential tasks: rapid growth,
and leave other possibilities to future study.
The fossil dataset we use does not contain information

on growth. However, if we assume that the ability to
generate shell material (hence to grow) is proportional
to body mass (see [51] Chapter 16, but also [52,53]) we
can predict the growth, or at least a function proportional
to growth, using only the dimensionless parameters we
have. An evolute shell allows volume to grow rapidly with
each whorl. Rapid growth may be important because
predation tends to decrease with organism size. This would
select for increased W. However, the whorl expansion rate
W cannot grow without bound in order to avoid cyrtoconic
shells- the shell must close over itself at least once to
provide space for the ammonoid body (with possible
exceptions such as heteromorphs which go beyond the
present discussion). A coiled shell is also important in order
to benefit from increased shell thickness, because
until the ammonoid is closed, the thinner shell is
exposed to the outside. The small value of D is also
reasonable for such a function, because when W is
large, a small D is a must in order to benefit from
the advantages of W < 1/D (see Additional file 1 for a
more detailed explanation).
A similar function was suggested in snails where shell
growth rate was found to be larger in snails in the pres-
ence of predators [54].
To be concrete, we consider a putative performance func-

tion that penalizes the ammonoid for the smallness of its

diameter, namely P3 ¼
Z∞
0

1
diam tð Þdt (see Methods). Con-

tours of this performance function are shown in Figure 4C.
The function peaks at (D3,W3) = (0.12,4.44) close to the
third archetype D�

3;W
�
3

� � ¼ 0; 4:6ð Þ: At this archetype, am-
monoids reach large diameters most rapidly.
One may ask if the advantage of growth comes from

the increased diameter which might make the ammon-
oid too large for specific predators, or from the in-
creased shell thickness which make it stronger. It is
difficult to distinguish between this two conjectures
since from [47] we know that this quantities are propor-
tional to one another. It is likely that both diameter and
shell thickness contribute to fitness.
The three putative performance functions, shell

economy, hydrodynamic efficiency, and shell growth
together give rise to a triangular shaped Pareto front.
The Pareto front boundaries are given by the points
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of tangency of the contours of the different performance
functions. Figure 4D shows the computed Pareto front,
which resembles a slightly curved triangle, and is similar
to the observed suite of variation.

Ammonoid data is enclosed by a pyramid in W-D-S
morphospace
Up to now, we considered ammonoid morphology pro-
jected on the W-D plane. We now turn to the analysis of
the data in the three-dimensional morphospace, given by
W,D and S—whorl expansion, radii ratio and the shape of
the shell opening. Low values of the parameter S corres-
pond to oblate elliptical openings, giving rise to compressed
shells (Figure 5B, front). An S value of 1 corresponds
to a circular shell opening; high values corresponding
to depressed shell morphologies (Figure 5B, rear).
We attempted to enclose the 3D dataset by polygons

with 2 to 8 vertices. We evaluated the extent to which
each polygon explains the data, by calculating the RMS
distance of points outside the polyhedron. We find that
beyond 5 vertices, the RMS error does not decrease
significantly (Figure 5A): Shapes with 6 or more vertices
do not improve the closeness of fit appreciably. Hence a
5-vertex polygon is a parsimonious description of the data
Figure 5 The three dimensional Pareto front of the ammonoid dataset.
computed for different numbers of possible vertices: line, triangle, tetrahedron
archetypes up to 5. Increasing the number beyond 5 doesn't improve the fit b
Additional file 1). (B-D) The best fit 5-archetype polygon resembles a square p
green are post PT ammonoids. Archetypes are numbered, their morphology i
(Figure 5B-D). This 5-vertex shape has four vertices that lie
approximately on a plane. We thus consider this shape as a
pyramid. A square pyramid encloses the data better than
randomly permuted dataset with p <10-4 (see Methods).
The five vertices of the pyramid suggest five archetypes,

whose coordinates are given in Table 1. The square base
of the pyramid has two vertices at low S (vertices 1 and 2),
and two others, which match them for W and D values,
but have higher S values (vertices 4 and 5, respectively).
The apex of the pyramid has a thin opening with S = 0.3.
Projecting the pyramid on the W-D plane, we find that

the apex of the pyramid matches the ‘growth’ archetype
described above; the ‘economy’ and ‘hydrodynamic’
archetypes each corresponds to the projection of two
3D archetypes: the economy archetype corresponds to
archetypes 1 and 4, and the hydrodynamic archetype
to archetypes 2 and 5 (Figure 5).

Economy, hydrodynamic and growth performance
functions are maximized near three of the pyramid vertices
We repeated the calculation of economy performance
(ratio of internal volume to shell thickness) in three
dimensions. The 2D contours shown previously (Figure 4A)
were evaluated at S = 1. By varying S, we find that the
(A) The RMS error for PCHA optimal polygons and polyhedra is
, 5-vertex polyhedron, etc. Error decreases with increasing the number of
y much (for more evidence for the pyramidal shape of the data, see
yramid. Blue points denote FF to DM ammonoids, red are DM to PT and
s shown, and the suggested tasks are listed in panel A.



Table 1 Summary of suggested ammonoid archetypes

Suggested task W S D Archetype number

Economy of shell material 1.3 0.7 0.65 1

Hydrodynamic drag 1.55 0.2 0.04 2

Shell growth 4.6 0.3 0 3

Compactness + economy 1.6 3.2 0.5 4

Compactness + hydro. 1.07 1.8 0.01 5

Coordinates of the archetypes found by the archetype analysis algorithms with
5-archetypes, along with their putative tasks.
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maximal economy is found at (D1, S1,W1) = (0.67, 1.01, 1).
This is reasonably close to vertex 1 of the observed pyramid
D�

1; S
�
1;W

�
1

� � ¼ 0:65; 0:69; 1:35ð Þ: The internal volume to
shell volume ratio in this vertex is 96% of the optimum
value. For comparison, this ratio drops to nearly zero near
vertices 2 and 5 of the pyramid.
The hydrodynamic efficiency measured in [36] includes

data at values of S other than S = 1. This indicates that opti-
mal hydrodynamic efficiency is at low S values, i.e. S→0.
The resulting optimum is thus close to vertex 2 of the pyra-
mid, which is D�

2; S
�
2;W

�
2

� � ¼ 0:03; 0:19; 1:55ð Þ: note the
low values of D,S and W.
Archetype 3 has an S value close to 0.3. The depend-

ence of the growth performance function on S comes
only implicitly through the volume-to-surface ratio. It is
unclear from the present simplified model for the
growth performance function why 0.3 (and not 1) is se-
lected as the optimal S value for archetype 3. This S
value might be due, for example, to diminishing returns
of shell production per body mass. In other words, the
assumption that shell material production is constantly
proportional to body mass might be imprecise. If shell
production grows slower than linearly with body mass
(as supported by [52,53]), this will favor smaller-volume
ammonoids with smaller value of S that will increase
diameter faster.
The last two pyramid archetypes may be related to size
Two pyramid vertices remain to be explained, vertices 4
and 5. These vertices have large values of S, and correspond
to depressed shells (Figure 5B-D). We find that these
shapes have the smallest ratio of surface area to volume (as
detailed in Additional file 1). They are therefore the most
globular in the suite of variation, in the sense that their
height is most similar to their width and depth.
One feature of globular ammonoids is small size for a

given internal volume, because spherical shapes have the
minimal diameter of all shapes with the same volume.
Up to now, we did not consider the absolute size of the
ammonoids, only on dimensionless shape traits W, D
and S. To address this, we correlated data by McGowan
[29] on ammonoid size (diameter) with distance from
the five vertices of the pyramid. We find an enrichment
of small ammonoids most strongly near archetypes 4
and 5: the genera nearest to these vertices have the
smallest diameters (Figure 6). Archetypes 2 and 3 are
enriched with large ammonoids and archetype 1 has
weak enrichment since its S value (which is related to
globularity, Additional file 1) is relatively larger than
archetypes 2 and 3 (Table 1). Archetypes 4 and 5 may
thus correspond to economy and hydrodynamic tasks
respectively, combined with a need for smallness. This
relation between diameter and globularity is in line also
with [55], which used a different dataset.
We further compared the way ammonoids from different

periods fill out the pyramid. The main difference between
periods is between Paleozoic and Mesozoic genera.
Mesozoic ammonoids tend to have lower S values
than Paleozoic ones, as found by McGowan [29]. In
the pyramid, they are more densely arrayed near the
face defined by vertices 1, 2 and 3, and away from 5
and especially from 4. This may be interpreted in the
present framework as a shift in the niches occupied
by later ammonoids, in which tasks corresponding to
archetypes 4 and 5 contribute less to fitness than they
did in the Paleozoic niches.
Finally, we mapped the five archetypes of the pyramid

to the Westremann morphospace. We find that that
three archetypes, 1, 3 and 5, map near the three vertices
of the Westermann triangle (serpenticone, oxycone and
sphericone, respectively). The two other vertices of the
pyramid map closer to the edges of the triangle. Some of
the archetypes map slightly outside of the triangle since
they are exptrapolated points which lie outside of the
ammonite dataset. We also asked about the sensitivity of
this transformation, by testing a small region around
each archetype (a sphere of radius 5% of the total variation
in each coordinate). We find that one of the archetypes,
archetype 2, lies in a region of morphospace which is
severely warped by the Westermann transformation,
and maps to a wide region in the triangle. The other
archetypes are less sensitive and map to relatively
small regions of the triangle (Figure 7).

Discussion
This study explored how tradeoffs between multiple
tasks may have contributed to the evolution of
ammonoid shell morphology. Ammonoid shell data
on 990 genera were studied in Raup’s three parameter
morphospace. The data is well described by a square
pyramid. This finding is interpreted in light of Pareto
theory on tradeoffs between tasks. The five vertices of the
pyramid may be interpreted as archetype morphologies
optimal for a single task, and morphologies in the middle
of the pyramid are generalists which compromise between
the tasks.
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Figure 7 Archetypes in trait space and in Westermann space. (A) Ammonoids in Westermann space. The red ellipses are the pyramid
archetypes projected on the Westermann space, with 5% error in the archetype positions. Three of the pyramid archetypes lies near the vertices
of the triangle, another archetype is near the edge because both D and S are dominant. The region near archetype 2 is severely warped (large
red ellipse) because D,S and W are all relatively small. (note that archetypes 1,3 and 4 are inside the corresponding ellipses) (B) The pyramid in
the W-D-S trait space, the ellipsoids are 5% errorbars around each vertex. These small ellipsoids translates to the red ellipses of subfigure A when
switching to Westermann morphospace.

Figure 6 Size is enriched at some of the archetypes. Ammonoid shell diameter as a function of distance from each archetype shows that small
diameters are prevalent near archetypes 4 and 5. Data includes diameter for 392 genera (green points) [29], divided into 10 bins with equal number of
genera according to the distance from each archetype. Average diameter for each bin is plotted (blue points). For convenience, a fit of the averages to
a line is shown. (A) No diameter enrichment near archetype 1 (p = 0.29). (B) Positive diameter enrichment near archetype 2 (p <10-4) (C) Positive
diameter enrichment near archetype 3 (p = 0.0007). (D) Negative diameter enrichment near archetype 4 (p <10-4) (E) Negative diameter
enrichment near archetype 5 (p = 0.0002).
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We propose candidate tasks for the archetypes. Hydro-
dynamic efficiency is a good candidate for one of these
tasks, and is maximized near vertex 1 of the pyramid (low
W,D and S). Other putative tasks can be inferred from the
position of the other vertices of the pyramidal shell
distribution. We propose that economy of shell material
(perhaps related to buoyancy) is a second task, quantitated
by the ratio of internal volume and total shell material. The
maximum of this function matches one of the vertices of
the pyramid. A third task may be rapid growth. A perform-
ance function relating to rapid growth of ammonoid diam-
eter is maximal near the apex of the pyramid, at shells with
high W. Two other tasks may relate to small spherical-like
shells combined with low drag and high economy.
It is interesting to relate this study with previous work

by Westermann and Ritterbush based on the idea that
ammonoids face tradeoffs between different tasks, which
determine their morphologies [42-44]. Westermann
proposed a morphospace which, instead of working in
D-W-S space, works in a 2-dimensional projection
which consists of ratios of related measurements.
Westermann morphospace has many advantages. As a
method to reduce 3-dimensional data into 2-dimensional
one, it helps visualize data in order to achieve better
understanding of the geometry. It is also useful in under-
standing the different niches that ammonoids occupy and
infer the various tasks they face [43,44].
Westermann's 2-dimensional representation also has

drawbacks. As a dimensionality reduction method, it
loses information about the data. Ammonoid shells with
very different geometries can be mapped to the same
point in Westermann morphospace. Moreover, because
the Westemann map is nonlinear, there are regions in
morphospace that map to the triangle with relatively
large errors. For example, a small region around the
point of minimal values of D, S and W (which is close to
the pyramid archetype 2, which we relate to low drag)
can mapped to the entire Westermann triangle (linked
to what seen in Figure 7) depending on slight variation
in the values.
The present approach does not show these drawbacks

because it works directly in W-D-S morphospace. It thus
distinguishes between morphologies which are mapped
to the same Westermann point. The square pyramid
identified here suggests two new tasks (or end members)
in addition to Westermanns three. These are archetypes
2 and 4 which correspond to hydrodynamic drag and
compact shell economy. We also propose a different
interpretation of the other three tasks. For example the
Westermann oxycone endmember, which is linked to
nektonic lifestyle, corresponds to our archetype 3 (which
relates to rapid growth). Furthermore, the same oxyconic
endmember relates to certain morphologies near our
archetype 2 (which relates to low drag, similar to the
task suggested for this endmember in Westermann
morphospace).
The present study also bears on the question of

geometric constraints in evolution [15]. The W = 1/D
line in ammonoids is thought to be an outstanding
example of a geometric constraint [15], because of the
disadvantages of the open shell morphology beyond this
curve. This assumption is challenged by the existence of
organisms with W > 1/D, including lineages ancestral to
ammonoids as well as several heteromorphs [56]. The
present approach can make the concept of geometric
constraint more precise by relating it to biological tasks.
We consider the performance functions of tasks, some of
which indeed show a decline beyond the W= 1/D line. In
particular, economy and hydrodynamics contours both
begin to sharply decline when W> 1/D (Figure 4). This
provides a more principled explanation, replacing strict
geometric constraint with the more subtle dependence of
specific performance functions on geometry. Other
taxa may perform a different set of tasks, including a
task with an archetype in the ‘forbidden for ammonoid’
region, W > 1/D. Such tasks might explain the morphology
of the taxa which show gyroconic shells. An alternative
view is that some characters states do not require a func-
tional explanation, but rather were neutral enough for a
clade to succeed for some time.
This study adds to previous studies that used the Pareto

approach to analyze other biological systems [14]. These
systems showed lines, triangles or tetrahedra in morpho-
space. Ammonoids are the first system in which a pyram-
idal Pareto front is observed. For this purpose, we find that
the archetype analysis algorithm PCHA [45] is an efficient
way to detect high order polyhedra in data [19].
The present approach can be readily extended to other

shelled organisms such as gastropods and bivalves. One
application of the present approach is a quantitative
inference of which task is important for fitness in the
particular niche of each genus. The closer the shell
morphology is to a given vertex of the pyramid, the more
important the corresponding task. Since ammonoid shells
are carried by currents and found in rocks far from the
habitat of the living organism, it is challenging to connect
morphology with behavior. The present approach can
offer quantitative inference about the relative contribution
of tasks to fitness, to provide insight into the ecological
niche of these extinct organisms. More generally, this
study supports basic predictions of the Pareto theory for
evolutionary tradeoffs [14], which we hope will be useful
also for other biological contexts.

Conclusions
This study supports fundamental predictions of the Pareto
theory of tradeoffs by Shoval et al. [14] that have not been
previously tested on the scale of hundreds of millions of
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years of evolution. Ammonoid shell data on 990 genera is
well-described by a square pyramid in morphospace. The
five vertices of the pyramid may be interpreted as archetype
morphologies optimal for a single task. Inferred tasks
include shell economy, rapid growth, compactness and
hydrodynamic efficiency. The vertices of the polygon do
not change over the timescale of interest, as predicted in
the case where the tasks stay more-or-less constant because
they are dictated by biomechanical considerations. More-
over, the polygons and polyhedra in the theory are not
necessarily due to phylogenetic history, but rather to
convergent evolution to Pareto-optimal solutions. This
agrees with the finding that after a mass extinction
which removes almost all of the species, survivor spe-
cies evolve to re-fill the same polygon as their ancestors.
This approach may be used to infer biological tasks
from data in other biological contexts.

Methods
Polygons, polyhedra and their statistical significance
We use the archetype analysis method SISAL [41] to
compute the triangles in Figure 3. Since SISAL is only
able to detect simplexes, we use PCHA [45] to find the
three dimensional square pyramid, which is a polyhedron
but not a simplex (more details in Additional file 1). To
quantitate how well the triangle fits the data, we com-
puted the t-value as in [14], the ratio between the area of
the convex hull of the data and the and the area of the tri-
angle found by SISAL. This t-ratio has a value t = 1 for a
perfectly polygonal data. The t-ratio of the dataset is com-
pared to a randomized dataset with the same number of
genera, in which the parameters of each genera are ran-
domly and independently chosen from their observed dis-
tributions. The fraction of times that 10,000 randomized
dataset has a larger t-ratio than the real dataset is the p-
value for the data polygonality [19].

Statistical significance of triangle similarity
To compute similarity between two triangles, we computed
the ratio between the area of intersection of the triangles
and the area of their union. The larger this ratio, the more
similar the triangles. To compute p-value the ratio was
compared to that of 10,000 triangles whose vertices co-
ordinate pairs were generated randomly from a uniform
distribution on a rectangle. Note that the ratio is
independent on the rectangle chosen. The p-value is
the fraction of random triangle pairs with higher ratio
than the measured one.

Internal-volume to shell-volume performance function
We computed the internal to shell volume ratio numeric-
ally. Internal volume is computed by integrating along the
spiral over the internal area added to the shell. Shell vol-
ume is computed by integrating the length of the curve
added (part of a circumference of an ellipse), multiplied by
the constant relative width of the shell from [47]. Note
that, in order to obtain only the ratio of internal to shell
volume, it is enough to compute the integrands them-
selves and it is not necessary to integrate over the spiral.
More information can be found in Additional file 1.

Growth performance function
The growth performance function is a simple model that
penalizes small ammonoids according to the formula:

P ¼
Z∞
0

1
diam tð Þdt

Where diam(t) is the minimal diameter of the ammon-
oid at a given time. Assuming that generation of shell
material is proportional to body mass, this function is
proportional to:

Pe W

Ratio D;Wð Þ log Wð Þ 1þ ffiffiffiffiffiffi
W

p� � :
Where Ratio(D,W) is the ratio of internal volume to

shell volume as explained above. Details of this compu-
tation are in Additional file 1.

Additional file

Additional file 1: Evolutionary tradeoffs, Pareto optimality and the
morphology of ammonite shells – Supplementary Information.
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