215 research outputs found

    The effect of magnesium on the local structure and initial dissolution rate of simplified UK Magnox waste glasses

    Get PDF
    A series of simplified glasses were prepared to mimic the United Kingdom’'s Magnox radioactive waste glasses and determine the separate effect of the presence of Mg on the glass structure and the initial dissolution rate. These glasses had an alkaline earth (Ca/Mg) content of 6.5 mol% and relative ratios of Si, B and Na similar to 25 wt% waste loaded Magnox waste glass simulant. Each simplified glass had similar macroscopic properties, differing only in Ca/Mg ratio. 25Mg magic angle spinning nuclear magnetic resonance (MASNMR) spectra of the simplified Mg endmember (MgEM) glass (with no Ca) and the full-component simulant glass were similar, consistent with the similar Mg local environments in both glasses. 11B MASNMR spectra of the series of simplified glasses showed a systematic increase in the amount of three-coordinated boron ([3]B) with increasing amounts of Mg. A clear change in the charge balancing of four-coordinated boron ([4]B) by Mg compared with Ca is observed. However, 11B NMR measurements of the leached material showed that the additional [3]B was not preferentially leached from the Mg containing samples. Despite the structural changes in the glass induced by Ca/Mg substitution, initial dissolution rates (r0) remained invariant, within error, with Ca/Mg ratio. This indicates that the poorer aqueous durability of Mg-containing Magnox waste glass measured experimentally in long-term leaching experiments, compared with SON68 glass containing Ca, is not caused by a primary structural effect in the glass.R. Guo acknowledges the EPSRC and the University of Cambridge for an International Doctoral Scholarship. A portion of this work was funded by Radioactive Waste Management Limited (C.T. Brigden, S.W. Swanton and I. Farnan). The UK 850 MHz solid-state NMR Facility used in this research was funded by EPSRC and BBSRC (contract reference PR140003), as well as the University of Warwick including via part funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF). Collaborative assistance from the 850 MHz Facility Manager (Dinu Iuga, University of Warwick) is acknowledged

    Structure and dynamics of silicate glasses and melts

    Get PDF

    The effect of fission-energy Xe ion irradiation on the structural integrity and dissolution of the CeO2_2 matrix

    Get PDF
    © 2016 The Authors.This work considers the effect of fission fragment damage on the structural integrity and dissolution of the CeO₂ matrix in water, as a simulant for the UO₂ matrix of spent nuclear fuel. For this purpose, thin films of CeO₂ on Si substrates were produced and irradiated by 92 MeV 129Xe23+ ions to a fluence of 4.8 × 1015 ions/cm2 to simulate fission damage that occurs within nuclear fuels along with bulk CeO₂ samples. The irradiated and unirradiated samples were characterised and a static batch dissolution experiment was conducted to study the effect of the induced irradiation damage on dissolution of the CeO₂ matrix. Complex restructuring took place in the irradiated films and the irradiated samples showed an increase in the amount of dissolved cerium, as compared to the corresponding unirradiated samples. Secondary phases were also observed on the surface of the irradiated CeO₂ films after the dissolution experiment.The irradiation experiment was performed at the Grand AccĂ©lĂ©rateur National d’Ions Lourds (GANIL) Caen, France, and supported by the French Network EMIR. The support in planning and execution of the experiment by the CIMAP-CIRIL and the GANIL staff, especially, I. Monnet, C. Grygiel, T. Madi and F. Durantel is much appreciated. Thanks are given to I. Buisman and M. Walker from the Department of Earth Sciences, University of Cambridge for help in conducting electron probe microanalysis and polishing the samples, respectively. A.J. Popel acknowledges funding from the UK EPSRC (grant EP/I036400/1 and EP/L018616/1) and Radioactive Waste Management Ltd (formerly the Radioactive Waste Management Directorate of the UK Nuclear Decommissioning Authority, contract NPO004411A-EPS02)

    Discovery of a maximum damage structure for Xe-irradiated borosilicate glass ceramics containing powellite

    Get PDF
    In order to increase the waste loading efficiency in nuclear waste glasses, alternate glass ceramic (GC) materials are sought that trap problematic molybdenum in a water-durable CaMoO4 phase within a borosilicate glass matrix. In order to test the radiation resistance of these candidate wasteforms, accelerated external radiation can be employed to replicate long-term damage. In this study, several glasses and GCs were synthesized with up to 10 mol% MoO3 and subjected to 92 MeV Xe ions with fluences ranging between 5 × 10^12 to 1.8 × 10^14 ions/cm2. The main mechanisms of modification following irradiation involve: (i) thermal and defect-assisted diffusion, (ii) relaxation from the ion's added energy, (iii) localized damage recovery from overlapping ion tracks, and (iv) the accumulation of point defects or the formation of voids that created significant strain and led to longer-range modifications. Most significantly, a saturation in alteration could be detected for fluences greater than 4 × 10^13 ions/cm2, which represents an average structure that is representative of the maximum damage state from these competing mechanisms. The results from this study can therefore be used for long-term structural projections in the development of more complex GCs for nuclear waste applications.EPSRC (Grant No. EP/K007882/1

    Structural effects in UO2_2 thin films irradiated with fission-energy Xe ions

    Get PDF
    Uranium dioxide thin films have been successfully grown on LSAT (Al10_{10}La3_3O51_{51}Sr14_{14}Ta7_7) substrates by reactive magnetron sputtering. Irradiation by 92 MeV 129^{129}Xe23+^{23+} ions to simulate fission damage that occurs within nuclear fuels caused microstructural and crystallographic changes. Initially flat and continuous thin films were produced by magnetron sputtering with a root mean square roughness of 0.35 nm determined by AFM. After irradiation, this roughness increased to 60-70 nm, with the films developing discrete microstructural features: small grains (~3 ÎŒ\mum), along with larger circular (up to 40 ÎŒ\mum) and linear formations with non-uniform composition according to the SEM, AFM and EDX results. The irradiation caused significant restructuring of the UO2_2 films that was manifested in significant filmsubstrate mixing, observed through EDX analysis. Diffusion of Al from the substrate into the film in unirradiated samples was also observed.Engineering and Physical Sciences Research Council (Grant ID: EP/ I036400/1), Radioactive Waste Management Ltd (formerly the Radioactive Waste Management Directorate of the UK Nuclear Decommissioning Authority, contract NPO004411A-EPS02), Russian Foundation for Basic Research (projects 13-03-90916), CSAR, Grand AccelĂ©lĂ©rateur National d’Ions Lourds (GANIL) Caen France, French Network EMIR, CIMAP-CIRIL, M.V.Lomonosov Moscow State University Program of Development, CKP FMI IPCE RA
    • 

    corecore