Structure of UC₂ and U₂C₃:XRD, ¹³C NMR and EXAFS study

U. Carvajal Nuñez^a, R. Eloirdi^{a,*}, D. Prieur^a, L. Martel^a, E. López Honorato^b, I. Farnan^c, T. Vitova^d, J. Somers^a

^a European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany

^b Centro de Investigatión y de Estudios Avanzados del IPN (CINVESTAV), Unidad Saltillo, Av. Industria Metalúrgica 1062, Ramos Arizpe, Coahuila 25900, Mexico

^c University of Cambridge, Cambridge CB2 1TN, UK

^d Institut für Nukleare Entsorgung (INE), P.O. Box 3640, D- 76021 Karlsruhe, Germany

ARTICLE INFO

ABSTRACT

In this study, uranium dicarbide (UC₂) has been prepared by arc melting and heat treated under vacuum to form uranium sequicarbide (U₂C₃) in the presence of a second phase UC_{2 z}. Both samples, as cast and heat treated, have been characterised by chemical analyses, X ray diffraction (XRD), ¹³C magic angle spin ning nuclear magnetic resonance (MAS NMR) and by extended X ray absorption fine structure (EXAFS). The composition, the purity, the various environments of both U and C atoms as well as the bonds length with the coordination number have been determined. By combining a long range order method (XRD) and short range order spectroscopy techniques (EXAFS and NMR), a unique view on the microstructure of UC₂, before and after heat treatment, and of U₂C₃ phase has been achieved.

Keywords: NMR EXAFS XRD Carbides Uranium Nuclear Fuel

1. Introduction

Carbide materials are potential fuels for a number of advanced reactor designs [1] and for propulsion systems [2], as some of their properties are more favourable than oxides based fuels. Indeed, they are known for their high thermal conductivity [3], their higher structural stability and high fusion temperature [4 6]. Given the interest in uranium carbides for nuclear applications, a complete knowledge on the crystallographic properties of these materials is essential. Indeed, the presence of structural defects can affect the fuel properties during irradiation and could lead eventually to a degradation of both reactor safety and fuel performance [7 9]. According to the U C phase diagram [10,11], the main stoichiometries of uranium carbides are uranium monocarbide (UC_{1±x} with $x \leq 0.05$), uranium sesquicarbide (U₂C₃), and uranium dicarbide (UC₂). In our previous study [12] on UC_{1 $\pm x$}, we investi gated its structure with XRD, NMR and EXAFS techniques. It was possible to probe order disorder transition affected by the carbon content and the heat treatment. In this paper we extend this study to UC_2 and U_2C_3 , the two other phases of the U C system. Based on literature and the phase diagram, UC₂ phase exists in two different structures, a tetragonal form with a CaC₂ structure type (I4/mmm, space group (SG) n°139) [13,14] at lower temperature denoted α UC2 and a cubic form with a NaCl structure type

(Fm 3m, SG n°225) at higher temperatures, denoted the β UC2. UC₂, when synthesised, is always sub stoichiometric with a com position domain ranging from UC_{1.75} to UC_{1.95} [3]. The lattice parameter increases with the carbon content and with heat treat ment [15]. The U₂C₃ phase has the body centred cubic Pu₂C₃ type structure (I 43d, SG n°220) [13,14] and cannot be obtained directly by arc melting [3]. Many controversies have been reported in the literature on the synthesis of U₂C₃ [16] and its magnetic properties [17]. Now it is well known that U₂C₃ can be generated from a start ing material UC_x (*x* = 1.5 2) by grinding, pressing, and heating un der high vacuum. Obtaining U₂C₃ as a single phase is difficult most likely due to the slow kinetics of the reaction. According to the starting composition, two mechanisms of reaction can take place to synthesize it, the synthetic and the decomposition reaction [18] described in Eqs. (1) and (2) respectively:

$$UC_2 + UC \to U_2C_3 \tag{1}$$

$$2UC_2 \rightarrow U_2C_3 + C \tag{2}$$

The decomposition reaction is slower than the synthetic reaction [19] and requires high vacuum to induce the departure of oxygen which in fact stabilises UC_2 [20]. Nickel and Saeger [19] argued that pure UC_2 sample does not lead directly to sesqui carbide (Eq. (2)) but it decomposes first following the reaction: $UC_2 \rightarrow UC + C$. If this is correct, then the intermediate UC should appear and should be detected by XRD and/or NMR, provided it is not consumed quickly. Thus, in this study we investigate the

^{*} Corresponding author. Tel.: +49 7247951 803; fax: +49 7247951 599. *E-mail address:* rachel.eloirdi@ec.europa.eu (R. Eloirdi).

decomposition reaction starting with a C/U composition close to the UC₂ compound. While static ¹³C NMR studies have been re ported on UC₂ and U₂C₃ in the past [21,22], so far no MAS NMR and no EXAFS studies have been performed on any of these phases. Chemical analyses inform us about the carbon content, XRD about the nature of the present phases, EXAFS will inform us about the bond distances in U₂C₃, in UC₂ as cast and heat treated, whereas NMR provides information on the different C environments. In the present work, we will first focus on the local structure of UC₂ as cast and then on UC₂ pressed and heat treated under high vac uum inducing the formation of U₂C₃ through an investigation cou pling XRD, EXAFS and ¹³C MAS NMR.

2. Experimental

2.1. Synthesis

The sample of uranium dicarbide UC₂ was prepared by arc melting of uranium metal and graphite under a high purity argon atmosphere (6 N) on a water-cooled copper hearth. Zirconium was placed in the preparation chamber and served as a getter for oxygen and nitrogen. The uranium dicarbide ingot was melted and turned around several times to achieve a homogenous sample. Synthesis of uranium sesquicarbide U₂C₃ is achieved by the heat treatment of the UC₂ sample. The latter was ball milled, pelletized and heat treated at 1450 °C for 48 h under high vacuum (10⁻⁵ mbar) followed by a slow cooling at 20 °C h⁻¹. In this article, the term "U₂C₃" is used to describe the sample obtained after heat treatment of UC₂ pellet and corresponds to a mixture of U₂C₃ and UC₂ - g phases. As carbides are easily oxidised in presence of humidity [23,24], the as-synthesized samples were stored under helium (6 N) to minimise oxygen contamination before performing the measurements.

2.2. Sample characterization methods

2.2.1. Chemical analysis

Chemical analyses of carbon contents have been performed on powdered samples by direct combustion using the infrared absorption detection technique with an ELTRA CS-800 instrument.

2.2.2. X-ray diffraction

X-ray diffraction analysis was performed on a Bruker D8 Bragg–Brentano advanced diffractometer (Cu K α_1 radiation) equipped with a Lynxeye linear position sensitive detector and installed inside a glove box under inert atmosphere. The powder diffraction patterns were recorded at room temperature using a step size of 0.01973° with an exposure of 4 s across the angular range $20^\circ \leq 2\theta \leq 120^\circ$. The operating conditions were 40 kV and 40 mA. Lattice parameters and quantification of the "U₂C₃" sample was performed by Rietveld refinement using Topas 4.1. software [25].

2.2.3. Nuclear magnetic resonance (NMR)

Uranium carbide ingots were crushed to a fine powder and loaded into 1.3 mm zirconia rotors under helium (6 N) in a glove box. The particle size was sufficiently small not to affect the radiofrequency response of the sample due to skin-depth effects. The ¹³C NMR spectra, with ¹³C in natural abundance (1.1%), were recorded on a Bruker Advance 400 spectrometer operating at 9.4 T (Larmor frequency of ¹³C 100 MHz). This apparatus has been adapted for the study of highly radioactive material using commercial NMR probes and rotors [26]. Despite the potential for eddy current effects during spinning of the semi-metallic uranium carbides, most of the ¹³C MAS-NMR spectra were acquired at spinning rates of 55 kHz. A rotorsynchronised Hahn echo was used to acquire the spectra. In order to minimise baseline distortions the pulse durations were 2.5 μ s (π /2) and 5 μ s (π), respectively, with an echo delay of $18.2 \,\mu s$ (1 rotor period). Fully relaxed spectra could be acquired with a recycle delay of 150 ms due to the efficient paramagnetic relaxation mechanism provided by the conduction electrons [27]. ¹³C chemical shifts were calibrated relative to tetramethylsylane (0 ppm) by using adamantane as a secondary reference, with ¹³CH and ¹³CH₂ peaks at 29.45 ppm and 38.48 ppm [28], respectively. Due to safety restrictions on running the MAS-NMR system unattended overnight, the number of transients was limited to 51,200 for each spectrum. All the spectra were fitted using the DMFIT software [29].

2.2.4. Extended X-ray absorption fine structure

EXAFS measurements were performed on the uranium carbides powder comilled with BN at the INE-Beamline at the Angströmquelle Karlsruhe (ANKA) [30]. A Ge(422) double crystal monochromator coupled with a collimating and focusing Rh-coated mirrors was used. X-ray absorption fine structure (XAFS) spectra were collected in transmission geometry at the U L_{III} (17,166 eV) edge. Energy calibration was provided by an yttrium (17,038 eV) foil located between the second and the third ionization chamber. Each spectrum was aligned using the U reference foil XANES spectra before averaging scans. The ATHENA software [31] was used for data reduction, normalisation and extraction of EXAFS oscillations. Experimental EXAFS spectra were Fourier-transformed using a Hanning window within 2.5–8.8 Å ¹ *k*-range. The ARTEMIS software [31] was used to perform the fits. Both scattering phases and amplitudes were calculated using the *ab initio* code FEFF8.20 [32]. Data fitting was performed in *R* space for *R* values ranging from 1.4 to 5.1 Å. The S_0^2 value was set at 0.9 and the shift in threshold energy was varied as a global parameter.

3. Results and discussion

3.1. Chemical and X ray diffraction analyses of UC_2 as cast and " U_2C_3 " samples

The chemical analysis results, summarized in Table 1, indicate that the as cast UC_2 sample has a carbon content of 8.70 ± 0.26 wt% corresponding to a stoichiometry of $UC_{1.89\pm0.06}$. Within uncertainty of the measurement this stoichiometry lies within the theoretical value derived from the starting material, i.e. $UC_{1.94}$. This slight hypostoichiometry was expected however, as the composition domain of UC_2 ranges from $UC_{1.75}$ to $UC_{1.95}$ [3]. In the present manuscript, the nomenclature of the hypostoi chiometric and as cast sample $UC_{1.94}$ will be simply UC_2 . Also the analyses show that after heat treatment of pressed UC_2 , the carbon content in " U_2C_3 " sample decreased. This carbon can leave the ma trix as CO through the application of the temperature and the high vacuum [33,34].

All peaks in the XRD pattern of the UC₂ sample, presented in Fig. 1 (insert), could be assigned to a tetragonal structure and a space group of I4/mmm. It shows that uranium dicarbide can be obtained directly as a single phase in this composition domain by arc melting. The broadening of the peaks, related to the crystal lite size and the strain [35] present in the material, is linked out to the preparation using ball milling [36]. The high purity of the sam ple is also supported by the low oxygen content (<200 ppm). The associated lattice parameters were a = 3.5225 (1) Å and c = 5.994 (1) Å, which are in good agreement with literature data [37,38].

Table 1

Chemical analyses of UC₂ as cast and "U₂C₃" samples.

	UC ₂	"U ₂ C ₃ "
Theoretical C content (wt%)	8.91	-
C/U ratio	1.94	-
Measured C content (wt%)	8.70 (0.26)	8.20 (0.16)
C/U ratio	1.89 (0.06)	1.77 (0.04)

Fig. 1. Rietveld refinement of " U_2C_3 " X-ray diffraction pattern (blue stick corresponding to UC₂ phase and green stick corresponding to U_2C_3 phase with their corresponding crystalline structure)_insert: XRD pattern of UC₂ as cast. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

After ball milling and pressing of the as cast UC₂ sample, the heat treatment at 1450 °C 48 h under high vacuum lead to the forma tion of a mixed phase sample, whose X ray diffraction pattern is presented in Fig. 1. All the peaks have been assigned to two phases, U₂C₃ with body centred cubic Pu₂C₃ type (I 43d) and UC_{2 *z*} with tetragonal structure, with an approximate composition of about 30 and 70 wt% respectively, as determined by Rietveld refinement. This composition is also supported by the phase rule, considering the phase diagram [11] and the C/U ratio of the sample (UC_{1.77±0.04}) determined by chemical analyses. The lattice parameter of U₂C₃, *a* = 8.0889 (3) Å, is in good agreement with literature data [30]. The lattice parameters of UC_{2-z} after annealing increase to *a* = 3.5252(3) Å and *c* = 6.000 (2) Å.

3.2. Local structure

3.2.1. Study of UC_2 as cast sample

The fitted U L_{III} edge EXAFS spectra in *k* and *R* space are pre sented in Fig. 2. The calculated UC₂ crystallographic parameters are given in Table 2. Taking into account the results of the XRD analysis, the EXAFS experimental data were fitted using a model consisting of spherical cluster of atoms with 7.5 Å size and CaC₂ type structure (I4/mmm). The following single scattering paths were taken into account: 2 U C, 1 U U and 1 U C, 1 U U corre sponding to the first and second U coordination spheres, respec tively. Both triangular and quadruple multiple scattering paths were included in the fit. The EXAFS analyses indicate that U is sur rounded by C atoms at 2.30 (1), 2.58 (1) and 3.71 (3) Å and by U atoms at 3.53 (1) and 3.87 (1) Å. The U U₁ distance, corresponding to the lattice parameter a, is in good agreement with the value de rived from XRD. From these derived interatomic distances, one can calculate that the C C distance of the C₂ dumbbells is equal to 1.39

Fig. 2. Experimental U-L_{III} EXAFS spectra and their corresponding Fourier transforms of UC₂ as cast and "U₂C₃" samples.

Table 2

Crystallographic parameters derived from EXAFS analyses of UC₂ as cast sample(R: interatomic distance; N: number of neighbours; σ : Debye–Waller factor, (a) this work, (b) calculated data [39]).

Shell	R (Å)		Ν	σ (Å ²)	R factor (%)
	(a)	(b)	(a)	(a)	
U-C _{1a}	2.30(1)	2.32	2	0.0073 (3)	2.1
U-C _{1b}	2.58 (1)	2.59	8	0.0071 (6)	
$U-U_1$	3.53 (1)	3.54	4	0.0040 (4)	
U-C ₂	3.71 (3)	3.88	2	0.008(1)	
$U-U_2$	3.87 (3)	3.90	8	0.006 (2)	

(1) Å, which is slightly higher than the previous reported value of 1.37 (1) Å [39].

In Fig. 3, the ¹³C Hahn echo MAS NMR spectrum of UC₂ acquired at a spinning frequency of 55 kHz is presented. As the uranium car bides are semi metals, large NMR shifts (Knight shifts) are ex pected due to the collective hyperfine shifts of unpaired electrons near the Fermi surface [40]. The spectrum has been fitted with two Gaussians at 1522 (70) ppm (C_{β}) and 1362 (10) ppm (C_{α}) with full width at half maxima (FWHM) of 215 (4) and 142 (1) ppm, respectively (see Table 3. Additional spinning sidebands have been identified and are indicated by stars. The second carbon environment, C_{β} , was detected with an intensity corresponding to 30% of the total spectrum area. C_{α} could be attributed to carbons localized on the octahedral sites of the CaC_2 structure while C_β to carbons in a more disordered environment (i.e. due to the presence of more vacancies or interstitials due to the rapid cooling). The va lue of the ¹³C shifts found here are relatively similar to that found by Lewis et al. [22] (Fig. 3B), who, only identified one peak, proba bly due to the low signal to noise ratio.

To induce improved local ordering of the carbons as previously seen for UC_{0.96} [12], an annealing of an ingot piece of UC₂ was made for 10 h at 1450 °C. The ordering of the structure in UC₂ (release of strain, vacancies ordering) should have led to a decrease of the C_{β} peak intensity and width. Unfortunately, however, the annealed sample would not spin for further MAS NMR analysis. This could have been due to an increased metallic property inducing a higher Eddy current and preventing the rotation of the sample in high field, as one might expect, as it has been shown that the resistivity of UC₂ decreases after annealing [41]. A static experiment (Fig. 4) performed on the same sample shows a narrowing and a better resolution of the peaks C_{α} and C_{β} in the annealed sample in agree ment with an ordering of the structure. Also the heat treatment

Fig. 3. A. ¹³C Hahn-echo MAS-NMR spectra of UC₂ and "U₂C₃" samples obtained at a spinning frequency of 55 kHz ($B_0 = 9.4$ T). The "U₂C₃" sample contains U₂C₃ and UC₂ _z phases. The stars correspond to the spinning sidebands. B. Comparison with literature of ¹³C shifts in UC₂ and U₂C₃.

Table 3

¹³C isotropic chemical shift (δ_{iso}), content of each ¹³C species and Full Width at Half Maximum (FWHM) for the as cast UC₂ and "U₂C₃" samples acquired at a spinning frequency of 55 kHz. (For UC₂:C_z: δ_{iso} of the main peak and C_{β} : δ_{iso} of the second peak).

Sample $\delta_{iso} (ppm)$		Content (mol%)		FWHM (ppm)		
	¹³ C _β	¹³ C _α	$^{13}C_{\beta}$	$^{13}C_{\alpha}$	$^{13}C_{\beta}$	$^{13}C_{\alpha}$
UC ₂	1522 (70)	1362 (10)	30	70	215 (4)	142 (1)
"U ₂ C ₃ "	¹³ C _{U2C3} 2283 (50)	¹³ C _{UC2 z} 1387 (10)	¹³ C _{U2C3} 25	¹³ C _{UC2 z} 75	¹³ C _{U2C3} 106 (2)	¹³ C _{UC2} z 148 (1)

Fig. 4. ¹³C Hahn-echo static spectra of UC₂ as cast and of an ingot piece of UC₂ annealed at 1450 °C for 10 h at 10 ⁵ mbar (B_0 = 9.1T).

Table 4

Crystallographic parameters derived from EXAFS analyses of U_2C_3 phase present in the " U_2C_3 " sample (*R*: interatomic distance; *N*: number of neighbours; σ : Debye–Waller factor, (a) this work, (b) calculated data [39]).

Shell	R (Å)		Ν	σ (Å ²)	R factor (%)
	(a)	(b)	(a)	(a)	
$\begin{array}{l} U-C_{1a} \\ U-C_{1b} \\ U-C_{1c} \\ U-U_{1a} \\ U-U_{1b} \\ U-U_{1c} \end{array}$	2.45 (2) 2.57 (2) 2.77 (2) 3.35 (3) 3.53 (3) 3.70 (5)	2.50 2.56 2.82 3.34 3.48 3.68	3 3 3 2 6	0.0075 (4) 0.0078 (5) 0.0076 (3) 0.005 (1) 0.004 (2) 0.005 (2)	2.5

made on ingot of UC₂ lead to lattice parameters of a = 3.5280(1) Å, c = 6.008 (6) Å and to the precipitation of UC (as shown in the XRD data in the insert in Fig. 4), showing that the process of grinding and pressing is indeed necessary to form U₂C₃ [42]. In our previous study [12], static spectrum of UC displayed a ¹³C shift of 1464 ppm. It overlaps with the C_β peak of UC₂, and thus we cannot distinguish the two phases (UC and C_β of UC₂) by this technique. The precipi tation of UC in annealed ingot of UC₂ sample has been reported in literature [19,43] and no explanation concerning the absence of U₂C₃ formation through synthetic reaction was provided so far.

3.2.2. Study of " U_2C_3 " sample

The U L_{III} edge spectra of the "U₂C₃" sample in *k* and *R* space are plotted in Fig. 2. The FT spectra of "U₂C₃" and UC₂ (Fig. 2B) differ in the 3 5 Å *R* range due to variations of the number of U atoms in the second shell. The crystallographic parameters of U₂C₃ and UC₂ _z are summarized in Table 4 and Table 5, respectively. Both U₂C₃ and UC₂ _z crystal phases were taken into account in the structural

Table 5

Crystallographic parameters derived from EXAFS analyses of UC₂ _z phase present in the "U₂C₃" sample (*R*: interatomic distance; *N*: number of neighbours; σ : Debye–Waller factor, (a) this work, (b) calculated data [39]).

Shell	<i>R</i> (Å)		Ν	σ (Å ²)	R factor (%)
	(a)	(b)	(a)	(a)	2.3
$U-C_{1a} U-C_{1b} U-U_1 U-C_2 U-U_2$	2.31 (2) 2.58 (2) 3.54 (2) 3.72 (3) 3.89 (3)	2.32 2.59 3.54 3.88 3.90	2 8 4 2 8	0.008 (1) 0.008 (1) 0.005 (1) 0.009 (1) 0.007 (2)	

model used in the EXAFS analyses. Spherical clusters of 7.5 Å in size with a Pu_2C_3 type structure (I 43d, U_2C_3) and CaC_2 type structure (I4/mmm, UC₂) were employed in the FEFF calculations.

The experimental data and fit agree within 2.5%, which con firms the validity of the used models. The interatomic distances de rived from EXAFS are well in accordance with first principle calculation made by Shi et al. [39] on U_2C_3 . Indeed, the first U C interatomic distances are equal to 2.45 (2), 2.57 (2) and 2.77 (2) Å. The U U interatomic distances are equal to 3.35 (3), 3.53 (3) and 3.70 (5) Å respectively (see Tables 4 and 5). Regarding the UC_{2 z} phase, the interatomic distances seem slightly larger than those observed in the as cast UC₂ sample. Although the exper imental error is significant, these EXAFS results are consistent with the increase of the lattice parameters observed by XRD.

Fig. 3A (bottom) presents the ¹³C Hahn echo MAS NMR spec trum of "U₂C₃" acquired at spinning frequency of 55 kHz. Two peaks are identified, one at 1387 (10) ppm and another at 2283 (50) ppm. The first peak is attributed to UC_2_z based on the previ ous NMR spectrum (Fig. 3A (top)) and on XRD data. It should be no ticed that the peak is slightly shifted (\sim 30 ppm) compared to that of the as cast UC₂ sample. This difference should be due to a differ ent carbon environment characterised by a different lattice param eters. The second peak can be attributed to U₂C₃ phase. Its shift is lower than that obtained in the static experiment by Lewis et al. [22], but very close to that obtained by Boutard and De Novion [21] (Fig. 3B). The quantification of the two phases as obtained by NMR (UC_{2 z}/U₂C₃: 75 mol%/25 mol%) confirms that derived from XRD analysis (UC_{2 z}/U₂C₃: 70 wt%/30 wt%). If free carbon is present in the sample, it is below the detection limits of both NMR and XRD. The "U₂C₃" sample has a carbon content of 8.20 ± 16 wt%, and it has been reported [18] that free carbon ap pears in samples containing more than 8.6 wt% of C.

3.2.3. Synthesis mechanism of U_2C_3 from UC_2

Taking into account the quantification of the two phases ob tained by XRD (UC₂ $_z$ /U₂C₃: 70 wt%/30 wt%), the carbon content in "U₂C₃" sample determined by chemical analyses (Table 1) and considering the atomic mass of carbon is negligible relative to ura nium so that in terms of molar mass M_{UC2} $_z \sim \frac{1}{2}$ M_{U2C3} \sim M_{UC1.77}, then one finds that the C/U ratio of UC₂ $_z$ is about 1.89. This value is, within the experimental error of the chemical analysis, identical

to the starting UC₂ as cast sample. Thus under our experimental conditions, we can represent the reaction of the crushed and pel letized sample under heat treatment (Δ) at 1450 °C, during 48 h and 10⁵ mbar nominally as,

$$UC_{2}(UC_{1.89}) \stackrel{\varDelta}{\to} 0.12 \stackrel{\frown}{C} + "U_{2}C_{3}"(UC_{1.77}) \quad UC_{2} \ _{z}(UC_{1.89}) + U_{2}C_{3}$$

We can also exclude that the ratio C/U in UC_{2 z} is superior to the ratio present in the starting material UC₂. Indeed, as argued Imoto et al. [18], this should only take place when UC precipitates after heat treatment of UC₂, just as we observed when heating an ingot of UC_2 (Fig. 4).

The carbon content decrease is related to the decarburisation of UC_2 which can take place along reactions (3) and (4), having the change in Gibbs free energy as reported in reference [44]:

 $\Delta \tilde{G}_{f}^{\text{deg}}$ (1300 K) [44]

$$2UC_2 \rightarrow U_2C_3 + C$$
 7.9 kJ/mole (3)

 $UC_2 \rightarrow UC + C$ 3.8 kJ/mole (4)

when reaction (4) occurs, UC could react along two reaction paths, (5) and (6), to form U_2C_3 :

$$UC + UC_2 \rightarrow U_2C_3 \qquad 2.9 \text{ kJ/mole} \tag{5}$$

$$2UC + C \rightarrow U_2C_3 + 2.1 \text{ kJ/mole}$$
 (6)

Reaction (6) is from a thermodynamic perspective not favour able and thus if UC is present then it contributes only to the forma tion of U_2C_3 via the synthetic reaction (5). Within the detection limit of XRD, we did not observe a UC phase as an intermediate on heating a pellet formed from a crushed sample and this may ex clude the process of synthetic reaction as a requirement for the decomposition reaction, as has been proposed by Nickel and Saeger [19]. The detection limit of XRD and NMR, however, does not exclude the later assumption completely. Nevertheless, the precip itation of UC in a matrix of UC₂, when heating an as cast ingot di rectly, does not lead to the formation of U₂C₃ (Fig. 4). The grinding and the pressing of UC_2 before heat treatment are essential to syn thesize U_2C_3 .

Apart from the slow rate of the decomposition reaction, the U_2C_3 yield may be limited due to either insufficient oxygen in the sample to remove C as CO and possibly drive the reaction. It could also be speculated that the absence of excess carbon in the starting material to precipitate the C in the sample could hinder the reaction. Monitoring the reaction as a function of time would be necessary, together with an analysis of the gas formed during the reaction, to elucidate this matter.

It is interesting to note, however, that the heat treatment on the UC₂ pellet (Fig. 1), leads to a highly crystallised "U₂C₃" sample as displayed by very narrow diffraction peaks. The thermal energy obviously permits C diffusion and the growth of U2C3 crystallites during the process [42,45,46].

4. Conclusion

A structural investigation of UC₂ (= $UC_{1.89\pm0.05}$) and U₂C₃ phases has been performed using a unique combination of different tech niques (XRD, NMR and EXAFS). UC₂ can be obtained directly by arc melting. EXAFS determination of the first U C and U U bond dis tances is in agreement with the tetragonal CaC₂ structure. ¹³C MAS NMR of the UC₂ sample identified a major carbon contribution at 1362 ppm, and a small contribution to the signal at 1522 ppm, which we attribute to a well ordered and less ordered phases, respectively. Heat treatment of such as cast ingots results in its

partial decomposition to UC. In contrast heat treatment of a pulverised ingot, repressed into a pellet yields a U₂C₃ phase coex isting with a second phase of UC_2 _z, with the latter having a slightly different lattice parameter than the as cast sample. EXAFS studies could distinguish between the CaC₂ and Pu₂C₃ type phase's present, while ${}^{13}C$ NMR identified the shift of the U_2C_3 at 2283 ppm. The mechanisms of the reaction leading to U_2C_3 are not clear, but the results of this study suggest that a simple decom position mechanism is most likely.

Acknowledgments

The authors thank T. Charpentier for fruitful discussion, Chris Selfslag, D. Boüxière, C. Boshoven and S. Morel for their technical help at the Institute for Transuranium Elements (ITU). The authors are also grateful to ANKA for providing beamtime and, especially, thank K. Dardenne and J. Rothe for their support during XAS experiments.

References

- [1] M.K. Meyer, R. Fielding, J. Gan, J. Nucl. Mater. 371 (2007) 281-287.
- [2] D.R. Koenig, LANL LA-10062-H, 1986.
- [3] B.R.T. Frost, J. Nucl. Mater. 10 (1963) 265-300.
- [4] H. Matsui, J. Nucl. Sci. Technol. 9 (1972) 185-186.
- [5] A.S. Kolokol, A.L. Shimkevich, Int. Conf. Nucl. Eng., Proceedings, ICONE 1 (2008) 759-763
- [6] P. Rodriguez, Bull. Mater. Sci. 22 (1999) 215-220.
- [7] F.J. Homan, T.B. Lindemer, E.L. Long, T.N. Tiegs, R.L. Beatty, Nucl. Technol. 35 (1977) 428-441.
- [8] K. Minato, T. Ogawa, K. Sawa, A. Ishikawa, T. Tomita, S. Iida, H. Sekino, Nucl. Technol. 130 (2000) 272-281.
- [9] E.K. Storms Jr., E.J. Huber, J. Nucl. Mater. 23 (1967) 19-24
- [10] P.-Y. Chevalier, E. Fischer, J. Nucl. Mater. 288 (2001) 100–129.
 [11] D. Manara, F. De Bruycker, A.K Sengupta, R. Agarwal, H.S Kamath, in: R.
- Konings (Ed.), Comprehensive Nuclear Materials, Elsevier, Amsterdam, Holland, 2012, pp. 87-137.
- [12] U. Carvajal-Nunez, L. Martel, D. Prieur, E. Lopez Honorato, R. Eloirdi, I. Farnan, T. Vitova, J. Somers, Inorg. Chem. 52 (2013) 11669–11676. [13] C. De Novion, J.-P. Krebs, P. Meriel, C.R. Acad. Sci. Paris, Ser. B 263 (1966) 457–
- 459.
- [14] A.E. Austin, Acta Crystallogr. 12 (1959) 159-161.
- [15] H. Tagawa, K. Fujii, Y. Sasaki, J. Nucl. Sci. Technol. 8 (1971) 244–249.
- [16] A. Buschinelli, A. Naoumidis, H. Nickel, J. Nucl. Mater. 58 (1975) 67-77.
- [17] R. Eloirdi, A.J. Fuchs, J.-C. Griveau, E. Colineau, A.B. Shick, D. Manara, R. Caciuffo, Phys. Rev. B 87 (2013) 214414-1-214414-9.
- [18] S. Imoto, T. Sano, Y. Takada, K. Yamamoto, K. Watanabe, T. Isoda, H. Uchikoshi, in: L.E. Russell et al. (Eds.), Carbides in Nuclear Energy, vol. 1, Maunillan, London, 1964, pp. 7-21.
- [19] H. Nickel, H. Saeger, J. Nucl. Mater. 28 (1968) 93-104.
- [20] J. Henney, D.T. Livey, N.A. Hill, Trans. Brit. Ceram. Soc. 62 (1963) 955.
- [21] J.-L. Boutard, C.-H. De Novion, Solid State Commun. 14 (1974) 181–185.
- [22] W.B. Lewis, S.W. Rabideau, N.H. Krikorian, W.G. Witteman, Phys. Rev. 170 (1968) 455-462.
- [23] L.J. Colby Jr., J. Less Common Metals 10 (1966) 425-431.
- [24] A. Schürenkämper, J. Inorg. Nucl. Chem. 32 (1970) 417-429.
- [25] A. Coelho, TOPAS-Academic, V. 4.1, Coelho Software, Brisbane, 2007.
- [26] L. Martel, J. Somers, C. Berkmann, F. Koepp, A. Rothermel, O. Pauvert, C. Selfslag, I. Farnan, Rev. Sci. Instrum. 84 (2013) 55112–55112-5. [27] C.P. Slichter, Principles of Magnetic Resonnance; 1980th ed.; Springer-Verlag,
- New York.
- [28] C.R. Morcombe, K.W. Zilm, J. Magn. Reson. 162 (2003) 479-486.
- [29] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 40 (2002) 70-76.
- [30] J. Rothe, S. Butorin, K. Dardenne, M.A. Denecke, B. Kienzler, M. Löble, V. Metz, A. Seibert, M. Steppert, T. Vitova, C. Walther, H. Geckeis, Rev. Sci. Instrum. 83 (2012) 43105-43117.
- [31] B. Ravel, M. Newville, J. Synchrotron Radiat. 12 (2005) 537-541.
- [32] J.J. Rehr, A. Ankudinov, S.I. Zabinsky, Catal. Today 39 (1998) 263-269.
- [33] K. Maruya, S. Takahashi, J. Nucl. Sci. Technol. 5 (1968) 605-609.
 [34] V.K. Orlov, V.S. Sergeev, M.A. Fomishkin, A.A. Rostovtsev, A.K. Kruglov, Atomic Energy 95 (2003) 536–539.
- [35] M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51 (2006) 427.
- [36] J.S. Benjamin, T.E. Volin, Metall. Trans. 5 (1974) 1929-1931.
- [37] V.V. Akhachinskii, S.N. Bashlykov, Atomic Energy 27 (1969) 524-532.
- [38] J. Henney, D.T. Livey, N.A. Hill, Trans. Brit. Ceram. Soc. 62 (1963) 955–973.
- [39] H. Shi, P. Zhang, S.-S. Li, B. Wang, B. Sun, J. Nucl. Mater. 396 (2010) 218–222.
- [40] S.G. Levine, J. Chem. Educ. 78 (2001) 133.

- [41] M. Horiki, S. Miyama, H. Matsui, T. Kirihara, J. Nucl. Sci. Technol. 19 (1982) 83–86.
 [42] J. Laugier, P.L. Blum, J. Nucl. Mater. 39 (1971) 245–252.
 [43] T. Kurasawa, H. Watanabe, T. Kikuchi, J. Nucl. Mater. 43 (1972) 192–204.

- [44] M.C. Krupka, Ceram. Bull. 48 (1969) 1133–1136.
 [45] L.M. Litz, A.B. Garrett, F.C. Croxton, J. Am. Chem. Soc. 70 (1948) 1718–1722.
 [46] A.E. Austin, A.F. Gerds, The Uranium–Nitrogen–Carbon System, Battelle Memorial Institute, 1958.

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Carvajal Nunez, U.; Eloirdi, R.; Prieur, D.; Martel, L.; Lopez Honorato, E.; Farnan, I.; Vitova, T.; Somers, J. <u>Structure of UC₂ and U₂C₃:XRD, ¹³C NMR and EXAFS study</u> 2014. Journal of alloys and compounds, 589, 234–239. doi:10.5445/IR/110098704

Zitierung der Originalveröffentlichung:

Carvajal Nunez, U.; Eloirdi, R.; Prieur, D.; Martel, L.; Lopez Honorato, E.; Farnan, I.; Vitova, T.; Somers, J. <u>Structure of UC₂ and U₂C₃:XRD, ¹³C NMR and EXAFS study</u> 2014. Journal of alloys and compounds, 589, 234–239. <u>doi:10.1016/j.jallcom.2013.11.202</u>

Lizenzinformationen: CC BY-NC-ND 4.0