61 research outputs found

    Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography.

    Get PDF
    Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices

    Plasma folate levels are associated with the lipoprotein profile: a retrospective database analysis

    Get PDF
    BACKGROUND: Several studies demonstrated an association of homocysteine plasma levels and the plasma lipoprotein profile. This cross-sectional pilot study aimed at analyzing whether blood levels of the two important cofactors of homocysteine metabolism, folate and vitamin B12, coincide with the lipoprotein profile. METHODS: In a retrospective single center approach, we analyzed the laboratory database (2003-2006) of the University Hospital Bonn, Germany, including 1743 individuals, in whom vitamin B12, folate and at least one lipoprotein parameter had been determined by linear multilogistic regression. RESULTS: Higher folate serum levels were associated with lower serum levels of low density lipoprotein cholesterol (LDL-C; Beta = -0.164; p < 0.001), higher levels of high density lipoprotein cholesterol (HDL-C; Beta = 0.094; p = 0.021 for trend) and a lower LDL-C-C/HDL-C-ratio (Beta = -0.210; p < 0.001). Using ANOVA, we additionally compared the individuals of the highest with those of the lowest quartile of folate. Individuals of the highest folate quartile had higher levels of HDL-C (1.42 +/- 0.44 mmol/l vs. 1.26 +/- 0.47 mmol/l; p = 0.005), lower levels of LDL-C (3.21 +/- 1.04 mmol/l vs. 3.67 +/- 1.10 mmol/l; p = 0.001) and a lower LDL-C/HDL-C- ratio (2.47 +/- 1.18 vs. 3.77 +/- 5.29; p = 0.002). Vitamin B12 was not associated with the lipoprotein profile. CONCLUSION: In our study sample, high folate levels were associated with a favorable lipoprotein profile. A reconfirmation of these results in a different study population with a well defined status of health, diet and medication is warranted

    Acute Lead Exposure Increases Arterial Pressure: Role of the Renin-Angiotensin System

    Get PDF
    Background: Chronic lead exposure causes hypertension and cardiovascular disease. Our purpose was to evaluate the effects of acute exposure to lead on arterial pressure and elucidate the early mechanisms involved in the development of lead-induced hypertension. Methodology/Principal Findings: Wistar rats were treated with lead acetate (i.v. bolus dose of 320 μg/Kg), and systolic arterial pressure, diastolic arterial pressure and heart rate were measured during 120 min. An increase in arterial pressure was found, and potential roles of the renin-angiotensin system, Na+,K+-ATPase and the autonomic reflexes in this change in the increase of arterial pressure found were evaluated. In anesthetized rats, lead exposure: 1) produced blood lead levels of 37±1.7 μg/dL, which is below the reference blood concentration (60 μg/dL); 2) increased systolic arterial pressure (Ct: 109±3 mmHg vs Pb: 120±4 mmHg); 3) increased ACE activity (27% compared to Ct) and Na+,K+-ATPase activity (125% compared to Ct); and 4) did not change the protein expression of the α1-subunit of Na+,K+-ATPase, AT1 and AT2. Pre-treatment with an AT1 receptor blocker (losartan, 10 mg/Kg) or an ACE inhibitor (enalapril, 5 mg/Kg) blocked the lead-induced increase of arterial pressure. However, a ganglionic blockade (hexamethonium, 20 mg/Kg) did not prevent lead's hypertensive effect. Conclusion: Acute exposure to lead below the reference blood concentration increases systolic arterial pressure by increasing angiotensin II levels due to ACE activation. These findings offer further evidence that acute exposure to lead can trigger early mechanisms of hypertension development and might be an environmental risk factor for cardiovascular diseaseThis study was supported by grants from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico)/FAPES (Fundação de Amparo à Pesquisa do Espírito Santo)/FUNCITEC (Fundação de Ciência e Tecnologia)(39767531/07), Brazil and from MCINN (Ministerio de Ciencia e Innovación) (SAF 2009- 07201) and ISCIII (Instituto de Salud Carlos III) (Red RECAVA- Red Temática de Investigación en Enfermedades Cardiovasculares del Instituto de Salud Carlos III, RD06/0014/0011), Spai

    Oksidacijski stres u lakirera izloženih niskim razinama olova

    Get PDF
    Lead toxicity is a public health problem particularly to the children and to occupationally exposed adults. Evidence is mounting successively regarding the adverse health effects of lead at low levels. This study was undertaken to assess the antioxidant status of lead-exposed residential and commercial painters of Lucknow city in Uttar Pradesh, India. Thirty-five painters aged 20 to 50 years who had blood lead levels ≤400 µg L-1 were selected for the study from a population of 56 male painters initially screened for blood lead. The control group included an equal number of subjects of the same age group without any occupational exposure to lead. We studied the association between low lead level exposure and antioxidant status and found that blood lead levels in painters were approximately seven times as high as in controls [(219.2 ± 61.9) µg L-1 vs. (30.6±10.1) µg L-1, respectively]. Among the biomarkers of lead toxicity a significant decrease in the level of delta-aminolevulinic acid dehydratase [(9.13±4.62) UL-1 vs. (39.38±5.05) UL-1] and an increase in the level of zinc protoporphyrin [(187.9±49.8) µg L-1 vs. (26.4±5.5) µg L-1] were observed in painters compared to controls. Among antioxidant enzymes, painters showed a significant decrease in catalase [(56.77±11.11) UL-1 vs. (230.30±42.55) UL-1] and superoxide dismutase [(0.64±0.19) UL-1 vs. (2.68±0.62) UL-1] compared to controls. Lipid peroxidation was monitored by measuring thiobarbituric acid reactive substances (TBARS) that were expressed in terms of malondialdehyde (MDA) equivalents. Concentration of MDA in plasma was higher in painters than in controls [(7.48±1.31) nmol mL-1 vs. (3.08±0.56) nmol mL-1]. Significant changes were also observed in reduced and oxidised glutathione levels. The strong association between blood lead levels and oxidative stress markers in this population suggests that oxidative stress should be considered in the pathogenesis of lead-related diseases among people with low level environmental exposure to lead.Toksičnost olova javnozdravstveni je problem, napose u djece i odraslih osoba koje su im izložene profesionalno. Sve je više dokaza o štetnom djelovanju olova pri niskim razinama. Svrha je ovog ispitivanja bila procijeniti antioksidacijski status u lakirera iz grada Lucknowa u indijskoj pokrajini Uttar Pradesh. Iz skupine od 56 muškaraca lakirera u dobi od 20 do 50 godina s pozitivnim početnim nalazima olova u krvi, za ispitivanje su izabrana 35-orica čije su razine iznosile ≤400 µg L-1. Izabran je i jednaki broj kontrolnih ispitanika iz iste dobne skupine, koji nisu bili profesionalno izloženi olovu. Ispitana je povezanost izme|u izloženosti niskim razinama olova i antioksidacijskoga stanja te je utvrđeno da su razine olova u krvi lakirera [(219,2±61,9) µg L-1] bile oko sedam puta više negoli u kontrolnih ispitanika [(30,6±10,1) µg L-1]. Od biopokazatelja toksičnosti olova u lakirera je zamijećen značajan pad razina delta- ALAD [(9,13±4,62) UL-1 prema (39,38±5,05) UL-1] te rast razina cinkova protoporfirina [(187,9±49,8) µg L-1 prema (26,4±5,5) µg L-1] u odnosu na kontrolne ispitanike. Od antioksidacijskih enzima u lakirera je značajno pala aktivnost katalaze [(56,77±11,11) UL-1 prema (230,30±42,55) UL-1] i superoksid dismutaze [(0,64±0.19) UL-1 prema (2,68±0,62) UL-1] u odnosu na kontrolu, dok je produkt lipidne peroksidacije u plazmi (izv. thiobarbituric acid reactive substances, TBARS) izražen kao koncentracija malondialdehida (MDA) porastao [(7,48±1,31) nmol mL-1 prema (3,08±0,56) nmol mL-1]. Značajne su promjene također zamijećene u smanjenim razinama glutationa i njihovoj oksidaciji. Snažna povezanost razina olova u krvi s pokazateljima oksidacijskoga stresa upućuje na to da u osoba s niskom razinom izloženosti olovu iz okoliša kod razmatranja patogeneze bolesti povezane s olovom u obzir valja uzeti oksidacijski stres

    Diagnostics and treatment of respiratory tract infections (excluding community-acquired pneumonia) in outpatient treated children without severe underlying diseases

    Full text link
    corecore