5,211 research outputs found
Capabilities and limitations of the Jicamarca radar as an MST radar
The Jicamarca radar (Long. 76.52W, Lat. 11.56S), located at 20 km from Lima at approximately 500 meters over sea level, is surrounded by mountains which provide a good shield from man-made interference. The radio horizon goes from a few hundred meters, across the dry valley where it is located, to 15 km, along the valley in the direction of the continental divide. This limits the clutter to 15 km, except for one high peak at 21 km. It is the most equatorial of all existing MST radars. Its proximity to the Andes, makes its location unique for the study of lee waves and orographic-induced turbulence. Vertical as well as horizontal projections of MST velocities are obtained by simultaneously pointing with different sections of the antenna into three or four different directions. The transmitters, receivers, and systems for data acquisition, processing, and control are included
Grain boundary partitioning of Ar and He
An experimental procedure has been developed that permits measurement of the partitioning of Ar and He between crystal interiors and the intergranular medium (ITM) that surrounds them in synthetic melt-free polycrystalline diopside aggregates. ^(37)Ar and ^(4)He are introduced into the samples via neutron irradiation. As samples are crystallized under sub-solidus conditions from a pure diopside glass in a piston cylinder apparatus, noble gases diffusively equilibrate between the evolving crystal and intergranular reservoirs. After equilibration, ITM Ar and He is distinguished from that incorporated within the crystals by means of step heating analysis. An apparent equilibrium state (i.e., constant partitioning) is reached after about 20 h in the 1450 °C experiments. Data for longer durations show a systematic trend of decreasing ITM Ar (and He) with decreasing grain boundary (GB) interfacial area as would be predicted for partitioning
controlled by the network of planar grain boundaries (as opposed to ITM gases distributed in discrete micro-bubbles or melt).
These data yield values of GB-area-normalized partitioning, K¯^(Ar)_(ITM), with units of (Ar/m^3 of solid)/(Ar/m^2 of GB) of 6.8 x 10^3 – 2.4 x 104 m^(-1). Combined petrographic microscope, SEM, and limited TEM observation showed no evidence that a residual glass phase or grain boundary micro-bubbles dominated the ITM, though they may represent minor components. If a nominal GB thickness (δ) is assumed, and if the density of crystals and the grain boundaries are assumed equal, then a true grain boundary partition coefficient (K^(Ar)_(GB) = X^(Ar)_(crystals)/X^(Ar)_(GB) may be determined. For reasonable values of δ, K^(Ar)_(GB) is at least an order of magnitude lower than the Ar partition coefficient between diopside and melt. Helium partitioning data provide a less robust constraint with K¯^(He)_(ITM) between 4 x 10^3 and 4 x 10^4 cm^(-1), similar to the Ar partitioning data. These data suggest that an ITM consisting of nominally melt free, bubble free, tight grain boundaries can constitute a significant but not infinite reservoir, and therefore bulk transport pathway, for noble gases in fine grained portions of the crust and mantle where aqueous or melt fluids are non-wetting and of very low abundance (i.e., <0.1% fluid). Heterogeneities in grain size within dry equilibrated systems will correspond to significant differences in bulk rock noble gas content
Spin-2 Amplitudes in Black-Hole Evaporation
Quantum amplitudes for gravitational-wave perturbations of
Einstein/scalar collapse to a black hole are treated by analogy with
Maxwell perturbations. The spin-2 perturbations split into parts with odd and
even parity. We use the Regge-Wheeler gauge; at a certain point we make a gauge
transformation to an asymptotically-flat gauge, such that the metric
perturbations have the expected falloff behaviour at large radii. By analogy
with , for natural 'coordinate' variables are given by the magnetic
part of the Weyl tensor, which can be taken as boundary
data on a final space-like hypersurface . For simplicity, we take the
data on the initial surface to be exactly spherically-symmetric. The
(large) Lorentzian proper-time interval between and ,
measured at spatial infinity, is denoted by . We follow Feynman's
prescription and rotate into the complex: , for . The corresponding complexified {\it
classical} boundary-value problem is expected to be well-posed. The Lorentzian
quantum amplitude is recovered by taking the limit as . For
boundary data well below the Planck scale, and for a locally supersymmetric
theory, this involves only the semi-classical amplitude , where denotes the second-variation classical
action. The relations between the and natural boundary data,
involving supersymmetry, are investigated using 2-component spinor language in
terms of the Maxwell field strength and the Weyl spinor
Fluctuation characteristics of the TCV snowflake divertor measured with high speed visible imaging
Tangentially viewing fast camera footage of the low-field side snowflake
minus divertor in TCV is analysed across a four point scan in which the
proximity of the two X-points is varied systematically. The motion of
structures observed in the post- processed movie shows two distinct regions of
the camera frame exhibiting differing patterns. One type of motion in the outer
scrape-off layer remains present throughout the scan whilst the other, apparent
in the inner scrape-off layer between the two nulls, becomes increasingly
significant as the X-points contract towards one another. The spatial structure
of the fluctuations in both regions is shown to conform to the equilibrium
magnetic field. When the X-point gap is wide the fluctuations measured in the
region between the X-points show a similar structure to the fluctuations
observed above the null region, remaining coherent for multiple toroidal turns
of the magnetic field and indicating a physical connectivity of the
fluctuations between the upstream and downstream regions. When the X-point gap
is small the fluctuations in the inner scrape-off layer between the nulls are
decorrelated from fluctuations upstream, indicating local production of
filamentary structures. The motion of filaments in the inter-null region
differs, with filaments showing a dominantly poloidal motion along magnetic
flux surfaces when the X-point gap is large, compared to a dominantly radial
motion across flux-surfaces when the gap is small. This demonstrates an
enhancement to cross-field tranport between the nulls of the TCV low-field-side
snowflake minus when the gap between the nulls is small.Comment: Accepted for publication in Plasma Physics and Controlled Fusio
A Cenozoic-style scenario for the end-Ordovician glaciation
The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive glaciation potentially at elevated CO2 levels, biogeochemical cycle disruptions recorded as large isotope anomalies and a devastating extinction event. Ice-sheet volumes claimed to be twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as today. Here we argue that some of these remarkable claims arise from undersampling of incomplete geological sections that led to apparent temporal correlations within the relatively coarse resolution capability of Palaeozoic biochronostratigraphy. We examine exceptionally complete sedimentary records from two, low and high, palaeolatitude settings. Their correlation framework reveals a Cenozoic-style scenario including three main glacial cycles and higher-order phenomena. This necessitates revision of mechanisms for the end-Ordovician events, as the first extinction is tied to an early phase of melting, not to initial cooling, and the largest δ13C excursion occurs during final deglaciation, not at the glacial apex
The UK National Recovery Survey:nationally representative survey of people overcoming a drug or alcohol problem
BackgroundAlcohol or drug (AOD) problems are a significant health burden in the UK population, and understanding pathways to remission is important.AimsTo determine the UK population prevalence of overcoming an AOD problem and the prevalence and correlates of ‘assisted’ pathways to problem resolution.MethodStage 1: a screening question was administered in a national telephone survey to provide (a) an estimate of the UK prevalence of AOD problem resolution; and (b) a demographic profile of those reporting problem resolution. Stage 2: social surveying organisation YouGov used the demographic data from stage 1 to guide the administration of the UK National Recovery Survey to a representative subsample from its online panel.ResultsIn stage 1 (n = 2061), 102 (5%) reported lifetime AOD problem resolution. In the weighted sample (n = 1373) who completed the survey in stage 2, 49.9% reported ‘assisted’ pathway use via formal treatment (35.0%), mutual help (29.7%) and/or recovery support services (22.6%). Use of an assisted pathway was strongly correlated with lifetime AOD diagnosis (adjusted odds ratio [AOR] = 9.54) and arrest in the past year (AOR = 7.88) and inversely correlated with absence of lifetime psychiatric diagnosis (AOR = 0.17). Those with cocaine (AOR = 2.44) or opioid problems (AOR = 3.21) were more likely to use assisted pathways compared with those with primary alcohol problems.ConclusionNearly three million people have resolved an AOD problem in the UK. Findings challenge the therapeutic pessimism sometimes associated with these problems and suggest a need to learn from community-based self-change that can supplement and enhance existing treatment modalities
- …