6,659 research outputs found

    The von Neumann entropy asymptotics in multidimensional fermionic systems

    Full text link
    We study the von Neumann entropy asymptotics of pure translation-invariant quasi-free states of d-dimensional fermionic systems. It is shown that the entropic area law is violated by all these states: apart from the trivial cases, the entropy of a cubic subsystem with edge length L cannot grow slower than L^{d-1}ln L. As for the upper bound of the entropy asymptotics, the zero-entropy-density property of these pure states is the only limit: it is proven that arbitrary fast sub-L^d entropy growth is achievable.Comment: 10 page

    On the sharpness of the zero-entropy-density conjecture

    Full text link
    The zero-entropy-density conjecture states that the entropy density, defined as the limit of S(N)/N at infinity, vanishes for all translation-invariant pure states on the spin chain. Or equivalently, S(N), the von Neumann entropy of such a state restricted to N consecutive spins, is sublinear. In this paper it is proved that this conjecture cannot be sharpened, i.e., translation-invariant states give rise to arbitrary fast sublinear entropy growth. The proof is constructive, and is based on a class of states derived from quasifree states on a CAR algebra. The question whether the entropy growth of pure quasifree states can be arbitrary fast sublinear was first raised by Fannes et al. [J. Math. Phys. 44, 6005 (2003)]. In addition to the main theorem it is also shown that the entropy asymptotics of all pure shift-invariant nontrivial quasifree states is at least logarithmic.Comment: 11 pages, references added, corrected typo

    On the automorphisms of moduli spaces of curves

    Full text link
    In the last years the biregular automorphisms of the Deligne-Mumford's and Hassett's compactifications of the moduli space of n-pointed genus g smooth curves have been extensively studied by A. Bruno and the authors. In this paper we give a survey of these recent results and extend our techniques to some moduli spaces appearing as intermediate steps of the Kapranov's and Keel's realizations of Mˉ0,n\bar{M}_{0,n}, and to the degenerations of Hassett's spaces obtained by allowing zero weights.Comment: 15 pages. The material of version 1 has been reorganized and expanded in this paper and in arXiv:1307.6828 on automorphisms of Hassett's moduli space

    On the net reproduction rate of continuous structured populations with distributed states at birth

    Full text link
    We consider a nonlinear structured population model with a distributed recruitment term. The question of the existence of non-trivial steady states can be treated (at least!) in three different ways. One approach is to study spectral properties of a parametrized family of unbounded operators. The alternative approach, on which we focus here, is based on the reformulation of the problem as an integral equation. In this context we introduce a density dependent net reproduction rate and discuss its relationship to a biologically meaningful quantity. Finally, we briefly discuss a third approach, which is based on the finite rank approximation of the recruitment operator.Comment: To appear in Computers and Mathematics with Application

    Finite difference approximations for a size-structured population model with distributed states in the recruitment

    Get PDF
    In this paper we consider a size-structured population model where individuals may be recruited into the population at different sizes. First and second order finite difference schemes are developed to approximate the solution of the mathematical model. The convergence of the approximations to a unique weak solution with bounded total variation is proved. We then show that as the distribution of the new recruits become concentrated at the smallest size, the weak solution of the distributed states-at-birth model converges to the weak solution of the classical Gurtin-McCamy-type size-structured model in the weak^* topology. Numerical simulations are provided to demonstrate the achievement of the desired accuracy of the two methods for smooth solutions as well as the superior performance of the second-order method in resolving solution-discontinuities. Finally we provide an example where supercritical Hopf-bifurcation occurs in the limiting single state-at-birth model and we apply the second-order numerical scheme to show that such bifurcation occurs in the distributed model as well

    Nonlinear preferential rewiring in fixed-size networks as a diffusion process

    Full text link
    We present an evolving network model in which the total numbers of nodes and edges are conserved, but in which edges are continuously rewired according to nonlinear preferential detachment and reattachment. Assuming power-law kernels with exponents alpha and beta, the stationary states the degree distributions evolve towards exhibit a second order phase transition - from relatively homogeneous to highly heterogeneous (with the emergence of starlike structures) at alpha = beta. Temporal evolution of the distribution in this critical regime is shown to follow a nonlinear diffusion equation, arriving at either pure or mixed power-laws, of exponents -alpha and 1-alpha

    Syzygies of torsion bundles and the geometry of the level l modular variety over M_g

    Full text link
    We formulate, and in some cases prove, three statements concerning the purity or, more generally the naturality of the resolution of various rings one can attach to a generic curve of genus g and a torsion point of order l in its Jacobian. These statements can be viewed an analogues of Green's Conjecture and we verify them computationally for bounded genus. We then compute the cohomology class of the corresponding non-vanishing locus in the moduli space R_{g,l} of twisted level l curves of genus g and use this to derive results about the birational geometry of R_{g, l}. For instance, we prove that R_{g,3} is a variety of general type when g>11 and the Kodaira dimension of R_{11,3} is greater than or equal to 19. In the last section we explain probabilistically the unexpected failure of the Prym-Green conjecture in genus 8 and level 2.Comment: 35 pages, appeared in Invent Math. We correct an inaccuracy in the statement of Prop 2.

    GATEKEEPERS IN THE INDUSTRIAL SETTING

    Get PDF

    Magnetic field control of cycloidal domains and electric polarization in multiferroic BiFeO3_3

    Full text link
    The magnetic field induced rearrangement of the cycloidal spin structure in ferroelectric mono-domain single crystals of the room-temperature multiferroic BiFeO3_3 is studied using small-angle neutron scattering (SANS). The cycloid propagation vectors are observed to rotate when magnetic fields applied perpendicular to the rhombohedral (polar) axis exceed a pinning threshold value of \sim5\,T. In light of these experimental results, a phenomenological model is proposed that captures the rearrangement of the cycloidal domains, and we revisit the microscopic origin of the magnetoelectric effect. A new coupling between the magnetic anisotropy and the polarization is proposed that explains the recently discovered magnetoelectric polarization to the rhombohedral axis
    corecore