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We consider a size-structured population model where individuals may be recruited into the population at
different sizes. First- and second-order finite difference schemes are developed to approximate the solution
of the model. The convergence of the approximations to a unique weak solution is proved. We then show
that as the distribution of the new recruits become concentrated at the smallest size, the weak solution
of the distributed states-at-birth model converges to the weak solution of the classical Gurtin–McCamy-
type size-structured model in the weak∗ topology. Numerical simulations are provided to demonstrate
the achievement of the desired accuracy of the two methods for smooth solutions as well as the superior
performance of the second-order method in resolving solution-discontinuities. Finally, we provide an
example where supercritical Hopf-bifurcation occurs in the limiting single state-at-birth model and we
apply the second-order numerical scheme to show that such bifurcation also occurs in the distributed
model.

Keywords: continuous structured population models; distributed states-at-birth; finite difference approx-
imations; convergence theory; existence and uniqueness of solutions

1. Introduction

Continuous structured population models are frequently used to study fundamental questions of
population dynamics, see e.g. [1,2,5–11,17,22]. These models assume that individuals are distin-
guished from one another by characteristics such as body length, height, weight, maturity level,
and age, etc. These characteristics are often referred to as size in general. In the classical one-
dimensional case, size-structured models are formulated in terms of a nonlocal hyperbolic partial
differential equation (PDE) describing the dynamics of the density u(x, t) together with an
initial value u0(x) and a boundary condition at x = x0. Here x is the structuring variable size. The
boundary condition describes the inflow of newborns in the population. In most of these models,
it is assumed that all the newborns have the same size x0. It is clear in the case when x represents
age and x0 = 0. However, this assumption is not appropriate for many phenomena. For example,
newborns of human beings and other mammals can have different body lengths and weights at
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birth. In cell populations, where large enough cells with different sizes will divide into two new
daughter cells through mitosis and cytokinesis, there is no fixed size for the newly divided daugh-
ter cell when joining the population. Another example comes from modelling fragmentation and
coagulation in systems of reacting polymers where aggregates of different sizes coalesce to form
larger clusters or break apart into smaller ones [3,14,23]. In all of these examples, the recruitment
cannot be accurately modelled by simply imposing one boundary condition at the x0.

Population models with distributed states-at-birth thus were introduced and studied for example
in [2,7,11,22]. Calsina and Saldana [7] considered a very general size-structured model where indi-
viduals may be recruited into the population at different sizes. The recruitment of new individuals
is demonstrated in the PDE and modelled by a Lipschitz operator. They studied well-posedness
of the model and established global existence and uniqueness of solutions utilizing results from
the theory of nonlinear evolution equations. Tucker and Zimmerman [22] studied an age–size-
structured population model which assumes that size-at-birth is distributed. They proved the
existence of unique solutions to the model using a contraction mapping argument. The local
asymptotic stability of equilibria is also discussed using results from the theory of strongly con-
tinuous semigroups of bounded linear operators. Distributed recruitment terms also appear in
structured population models dealing with cell division [17] and in modelling reacting polymers
by means of fragmentation models [16].

In this paper we consider the following nonlinear Gurtin–MacCamy-type model with a dis-
tributed recruitment term (see, e.g. [11]) and will refer to it as the distributed size-structured model
(DSSM):

∂

∂t
p(s, t) + ∂

∂s
(γ (s, Q(t))p(s, t)) = −μ(s, Q(t))p(s, t)

+
∫ 1

0
β(s, y, Q(t))p(y, t) dy, s ∈ (0, 1), t ∈ (0, T),

γ (0, Q(t))p(0, t) = 0, t ∈ [0, T ],
p(s, 0) = p0(s), s ∈ [0, 1].

(1)

Here, p(s, t) denotes the density of individuals of size s at time t. Therefore, Q(t) = ∫ 1
0 p(s, t) ds

provides the total population at time t. The functions γ and μ represent the individual growth and
mortality rate, respectively. It is assumed that individuals may be recruited into the population
at different sizes with β(s, y, Q) being the rate at which one individual of size y gives birth to an
individual of size s when the total population is Q. There is no-inflow of individuals through the
boundary s = 0 since p(0, t) = 0 for all t ≥ 0.

Farkas et al. [11] analysed the asymptotic behaviour of solutions of model (1) using positive
perturbation arguments and results from the spectral theory of positive semigroups. In [2], the
question of the existence of non-trivial steady states is studied based on the reformulation of the
problem (1) as an integral equation. However, to our knowledge, numerical schemes for computing
approximate solutions of the distributed-rate model (1) have not been developed. Thus, in this
paper we focus on the development of finite difference schemes to approximate the solution
of model (1). Efficient schemes are essential for solving optimal control problems or parameter
estimation problems governed by model (1) as such problems require solving the model numerous
times before an optimal solution is obtained.

Furthermore, we establish a connection between the model (1) and the following classical
size-structured model (CSSM) which will be referred to as CSSM for abbreviation:

∂

∂t
p(s, t) + ∂

∂s
(γ (s, Q(t))p(s, t)) = −μ(s, Q(t))p(s, t), s ∈ (0, 1), t ∈ (0, T),
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4 A.S. Ackleh et al.

γ (0, Q(t))p(0, t) =
∫ 1

0
β̃(y, Q(t))p(y, t) dy, t ∈ [0, T ], (2)

p(s, 0) = p0(s), s ∈ [0, 1].
Here β̃ is the fertility rate of individuals of size y at population level Q and the rest of the functions

and parameters have similar interpretations as in model (1). We show that as the distribution of the
new recruits become concentrated at the smallest size, the weak solution of Equation (1) converge
in the weak∗ topology to the weak solution of Equation (2). To our knowledge, this is the first
theoretical result that connects the two models.

This paper is organized as follows. Assumptions and notation are introduced in Section 2. In
Section 3, we present a first-order explicit upwind (FOEU) scheme for solving the DSSM and
prove its convergence to a unique weak solution with bounded total variation (TV). In Section 4, we
present a second-order explicit finite difference scheme and prove its convergence. In Section 5, we
establish the connection between DSSM and CSSM. Section 6 is devoted to numerical simulations
and to the construction of a simple example in which supercritical Hopf-bifurcation occurs. We
give concluding remarks in Section 7.

2. Assumptions and notation

Let D1 = [0, 1] × [0, ∞) and D2 = [0, 1] × [0, 1] × [0, ∞). Let c be a sufficiently large positive
constant. Throughout the paper we impose the following regularity conditions on the functions
involved in the DSSM.

(H1) γ (s, Q) is continuously differentiable with respect to s and Q, γs(s, Q) and γQ(s, Q) are Lip-
schitz continuous in s with Lipschitz constant c, uniformly in Q. Moreover, 0 < γ (s, Q) ≤ c
for s ∈ [0, 1) and γ (1, Q) = 0.

(H2) 0 ≤ μ(s, Q) ≤ c, μ is Lipschitz continuous in s and Q with Lipschitz constant c.
(H3) 0 ≤ β(s, y, Q) ≤ c, β(s, y, Q) is Lipschitz continuous in Q with Lipschitz constant c,

uniformly in s and y. Moreover, for every partition {si}N
i=1 of [0, 1], we have

sup
(y,Q)∈[0,1]×[0,∞)

N∑
i=1

|β(si, y, Q) − β(si−1, y, Q)| ≤ c.

(H4) p0 ∈ BV([0, 1]), where BV stands for the space of functions with bounded TV, and p0(s) ≥
0.

Now we give the definition of a weak solution to the DSSM as follows.

Definition 2.1 A function p ∈ BV([0, 1] × [0, T ]) is called a weak solution of the DSSM model
(1) if it satisfies:∫ 1

0
p(s, t)φ(s, t) ds −

∫ 1

0
p0(s)φ(s, 0) ds

=
∫ t

0

∫ 1

0
p(s, τ)[φτ (s, τ) + γ (s, Q(τ ))φs(s, τ) − μ(s, Q(τ ))φ(s, τ)] ds dτ ]

+
∫ t

0

∫ 1

0

∫ 1

0
β(s, y, Q(τ ))p(y, τ)φ(s, τ) dy ds dτ (3)

for every test function φ ∈ C1([0, 1] × [0, T ]) and t ∈ [0, T ].
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Journal of Biological Dynamics 5

Suppose that the intervals [0, 1] and [0, T ] are divided into N and L subintervals, respectively.
The following notation will be used throughout the paper: �s = 1/N and �t = T/L. The discrete
mesh points are given by si = i�s, tk = k�t for i = 0, 1, . . . , N , k = 0, 1, . . . , L. For ease of
notation, we take a uniform mesh with constant sizes �s and �t. More general nonuniform meshes
can be similarly considered. We shall denote by pk

i and Qk the finite difference approximation of
p(si, tk) and Q(tk), respectively. We also let

γ k
i = γ (si, Qk), μk

i = μ(si, Qk), βk
i,j = β(si, yj, Qk).

We define the �1 and �∞ norms and the TV seminorm of the grid functions pk by

‖pk‖1 =
N∑

i=1

|pk
i |�s, ‖pk‖∞ = max

0≤i≤N
|pk

i |, TV(pk) =
N−1∑
i=0

|pk
i+1 − pk

i |,

and the finite difference operators by

�+pk
i = pk

i+1 − pk
i , 0 � i � N − 1, �−pk

i = pk
i − pk

i−1, 1 � i � N .

Throughout the discussion, we impose the following Courant–Friedrichs–Lewy condition
concerning �s and �t:

(H5) c(3�t/2�s) + c�t � 1.

3. A first-order upwind scheme

We first discretize model (1) using the following FOEU scheme:

pk+1
i − pk

i

�t
+ γ k

i pk
i − γ k

i−1pk
i−1

�s
= −μk

i p
k
i +

N∑
j=1

βk
i,jp

k
j �s, 1 ≤ i ≤ N , 0 ≤ k ≤ L − 1,

γ k
0 pk

0 = 0, 0 ≤ k ≤ L,

p0
i = p0(si), 0 ≤ i ≤ N ,

(4)

where the total population Qk is discretized by a right-hand sum Qk = ∑N
i=1 pk

i �s.
We can equivalently write the first part of Equation (4) as follows:

pk+1
i = �t

�s
γ k

i−1pk
i−1 +

(
1 − �t

�s
γ k

i − μk
i �t

)
pk

i +
⎛
⎝ N∑

j=1

βk
i,jp

k
j �s

⎞
⎠ �t,

1 ≤ i ≤ N , 0 ≤ k ≤ L − 1. (5)

The boundary condition γ (0, Q(t))p(0, t) = 0 and assumption (H1) imply that pk
0 = 0 for k ≥ 0.

One can easily see that under assumptions (H1)–(H5), pk+1
i ≥ 0, for i = 1, 2, . . . , N and k =

0, 1, . . . , L − 1. Therefore, the scheme (4) has a unique nonnegative solution.

3.1. Estimates for the first-order finite difference approximations

In this section we use techniques similar to [4,21]. We begin by establishing an �1 bound on the
approximations.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
St

ir
lin

g 
L

ib
ra

ry
] 

at
 0

3:
06

 2
5 

A
ug

us
t 2

01
5 



6 A.S. Ackleh et al.

Lemma 3.1 The following estimate holds:

‖pk‖1 ≤ (1 + c�t)k‖p0‖1 ≤ (1 + c�t)L‖p0‖1 ≤ exp(cT)‖p0‖1 ≡ M1, k = 0, 1, . . . , L.

Proof Multiplying Equation (5) by �s and summing over i = 1, 2, . . . , N , we have

N∑
i=1

pk+1
i �s =

N∑
i=1

pk
i �s − �t

N∑
i=1

(γ k
i pk

i − γ k
i−1pk

i−1) −
N∑

i=1

pk
i μ

k
i �s�t

+
N∑

i=1

⎛
⎝ N∑

j=1

βk
i,jp

k
j �s

⎞
⎠ �s�t.

Therefore by assumptions (H1)–(H3) and the second part of Equation (4)

‖pk+1‖1 ≤ ‖pk‖1 − �t(γ k
Npk

N − γ k
0 pk

0) + c‖pk‖1�t

= (1 + c�t)‖pk‖1,

which then implies the estimate. �

Note that Qk = ∑k
i=1 pk

i �s = ‖pk‖1 ≤ M1. We now define D3 = [0, 1] × [0, M1].
Lemma 3.2 The following estimate holds:

‖pk‖∞ ≤ (1 + 2c�t)k‖p0‖∞ ≤ (1 + 2c�t)L‖p0‖∞ ≤ exp(2cT)‖p0‖∞, k = 0, 1, . . . , L.

Proof Since pk
0 = 0 for k ≥ 0, ‖pk+1‖∞ is obtained at pk+1

i for some 1 ≤ i ≤ N .
From Equation (5) and assumptions (H1), (H3) and (H5), we have

‖pk+1‖∞ ≤ �t

�s
γ k

i−1‖pk‖∞ +
(

1 − �t

�s
γ k

i − μk
i �t

)
‖pk‖∞ + c‖pk‖∞�t

≤ ‖pk‖∞ + sup
D3

|γs|‖pk‖∞�t + c‖pk‖∞�t

≤ (1 + 2c�t)‖pk‖∞.

�

Lemma 3.3 There exists a positive constant M2 such that TV(pk) ≤ M2, k = 0, 1, . . . , L.

Proof From the first part of Equation (4), we have

pk+1
i+1 − pk+1

i = (pk
i+1 − pk

i ) − �t

�s
[(γ k

i+1pk
i+1 − γ k

i pk
i ) − (γ k

i pk
i − γ k

i−1pk
i−1)]

− �t(μk
i+1pk

i+1 − μk
i p

k
i ) +

N∑
j=1

(βk
i+1,j − βk

i,j)p
k
j �s�t.

Simple calculations yield

(γ k
i+1pk

i+1 − γ k
i pk

i ) − (γ k
i pk

i − γ k
i−1pk

i−1) = γ k
i+1(p

k
i+1 − pk

i ) + (γ k
i+1 − γ k

i )pk
i − γ k

i (pk
i − pk

i−1)

− (γ k
i − γ k

i−1)p
k
i

= γ k
i+1(p

k
i+1 − pk

i ) − γ k
i (pk

i − pk
i−1) + (γ k

i − γ k
i−1)

(pk
i − pk

i−1) + [(γ k
i+1 − γ k

i ) − (γ k
i − γ k

i−1)]pk
i .
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Journal of Biological Dynamics 7

Therefore, for 1 ≤ i ≤ N − 1,

pk+1
i+1 − pk+1

i =
(

1 − �t

�s
γ k

i+1

)
(pk

i+1 − pk
i ) + �t

�s
γ k

i (pk
i − pk

i−1) − �t

�s
(γ k

i − γ k
i−1)(p

k
i − pk

i−1)

− �t

�s
[(γ k

i+1 − γ k
i ) − (γ k

i − γ k
i−1)]pk

i − �t(μk
i+1pk

i+1 − μk
i p

k
i )

+
N∑

j=1

(βk
i+1,j − βk

i,j)p
k
j �s�t. (6)

Summing Equation (6) over i = 0, 1, . . . , N − 1 and applying assumptions (H1) and (H5) we
arrive at

TV(pk+1) = |pk+1
1 − pk+1

0 | +
N−1∑
i=1

|pk+1
i+1 − pk+1

i |

= pk+1
1 +

N−1∑
i=1

|pk
i+1 − pk

i | − �t

�s

N−1∑
i=1

(γ k
i+1|pk

i+1 − pk
i | − γ k

i |pk
i − pk

i−1|)

+ �t

�s

N−1∑
i=1

|γ k
i − γ k

i−1||pk
i − pk

i−1| + �t

�s

N−1∑
i=1

|(γ k
i+1 − γ k

i ) − (γ k
i − γ k

i−1)|pk
i

+ �t
N−1∑
i=1

|μk
i+1pk

i+1 − μk
i p

k
i | +

N−1∑
i=1

N∑
j=1

|βk
i+1,j − βk

i,j|pk
j �s�t. (7)

By Equation (5) and assumptions (H1)–(H3),

pk+1
1 = �t

�s
γ k

0 pk
0 +

(
1 − �t

�s
γ k

1 − μk
1�t

)
pk

1 +
⎛
⎝ N∑

j=1

βk
1,jp

k
j �s

⎞
⎠ �t

≤ pk
1 − �t

�s
γ k

1 pk
1 + c‖pk‖1�t. (8)

It can be seen from assumption (H1) that

N−1∑
i=1

(
γ k

i+1|pk
i+1 − pk

i | − γ k
i |pk

i − pk
i−1|

) = γ k
N |pk

N − pk
N−1| − γ k

1 |pk
1 − pk

0| = −γ k
1 pk

1 (9)

and

�t

�s

N−1∑
i=1

|(γ k
i+1 − γ k

i ) − (γ k
i − γ k

i−1)|pk
i = �t

�s

N−1∑
i=1

|γs(ŝi+1, Qk) − γs(ŝi, Qk)|pk
i �s

≤ �t
N−1∑
i=1

2cpk
i �s ≤ 2c‖pk‖1�t, (10)

where ŝi ∈ [si−1, si] and ŝi+1 ∈ [si, si+1].
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8 A.S. Ackleh et al.

By assumption (H2),

N−1∑
i=1

|μk
i+1pk

i+1 − μk
i p

k
i |�t ≤ �t

N−1∑
i=1

|μk
i+1 − μk

i |pk
i+1 +

N−1∑
i=1

sup
D3

μ|pk
i+1 − pk

i |�t

≤ c‖pk‖1�t + c
N−1∑
i=1

|pk
i+1 − pk

i |�t. (11)

By assumption (H3),

N−1∑
i=1

N∑
j=1

|βk
i+1,j − βk

i,j|pk
j �s�t =

N∑
j=1

(
N−1∑
i=1

∣∣βk
i+1,j − βk

i,j

∣∣) pk
j �s�t = c‖pk‖1�t. (12)

A combination of Equations (7)–(12) then yields

TV(pk+1) ≤ pk
1 − �t

�s
γ k

1 pk
1 + c‖pk‖1�t +

N−1∑
i=1

|pk
i+1 − pk

i | + �t

�s
γ k

1 pk
1

+ �t

�s
|γs|�s

N−1∑
i=1

|pk
i − pk

i−1| + c‖pk‖1�t + c‖pk‖1�t

+ c
N−1∑
i=1

|pk
i+1 − pk

i |�t + 2c‖pk‖1�t. (13)

Therefore, from assumption (H1), Lemmas 3.1 and 3.2, there exist positive constants c1 and c2

such that

TV(pk+1) ≤ (1 + c1�t) TV(pk) + c2�t,

which leads to the desired result. �

Lemma 3.4 There exists a positive constant M3 such that for any q1 > q2 > 0 the following
estimate holds:

N∑
i=1

∣∣∣∣pq1
i − pq2

i

�t

∣∣∣∣ �s ≤ M3(q1 − q2).

Proof By Equation (5) and assumptions (H1)–(H3), we have

N∑
i=1

∣∣∣∣∣pk+1
i − pk

i

�t

∣∣∣∣∣ �s =
N∑

i=1

∣∣∣∣∣∣γ k
i−1pk

i−1 − γ k
i pk

i − μk
i p

k
i �s +

N∑
j=1

βk
i,jp

k
j �s�s

∣∣∣∣∣∣
≤

N∑
i=1

|γ k
i − γ k

i−1|pk
i−1 +

N∑
i=1

γ k
i |pk

i − pk
i−1| +

N∑
i=1

μk
i p

k
i �s

+
N∑

i=1

N∑
i=j

βk
i,jp

k
j �s�s

≤ c TV(pk) + 3c‖pk‖1.
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Thus, by Lemmas 3.1 and 3.3 there exists a positive constant M3 such that

N∑
i=1

∣∣∣∣∣pk+1
i − pk

i

�t

∣∣∣∣∣ �s ≤ M3.

Therefore,
N∑

i=1

∣∣∣∣pq1
i − pq2

i

�t

∣∣∣∣ �s ≤
N∑

i=1

q1∑
k=q2

∣∣∣∣∣pk+1
i − pk

i

�t

∣∣∣∣∣ �s ≤ M3(q1 − q2).

�

3.2. Convergence of the first-order finite difference approximations to the unique weak
solution

Following similar notation as in [21] we define a set of functions {P�s,�t} by {P�s,�t(s, t)} = pk
i

for s ∈ [si−1, si), t ∈ [tk−1, tk), i = 1, 2, . . . , N , and k = 1, 2, . . . , L. Then by Lemmas 3.1–3.4, the
set of functions {P�s,�t} is compact in the topology of L1((0, 1) × (0, T)). Hence, following the
proof of Lemma 16.7 on p. 276 in [21] we obtain the following result.

Theorem 3.5 There exists a subsequence of functions {P�sr ,�tr } ⊂ {P�s,�t} which converges to
a function p ∈ BV([0, 1] × [0, T ]) in the sense that for all t > 0,∫ 1

0
|P�sr ,�tr − p(s, t)| ds −→ 0,

∫ T

0

∫ 1

0
|P�sr ,�tr − p(s, t)| ds dt −→ 0

as r → ∞ (i.e. �ar , �sr , �tr → 0). Furthermore, there exists a constant M4 depending on
‖p0‖BV([0,1]×[0,T ]) such that the limit function satisfies

‖p‖BV([0,1]×[0,T ]) ≤ M4.

We show in the next theorem that the limit function p(s, t) constructed by the finite difference
scheme is a weak solution of the DSSM model (1).

Theorem 3.6 The limit function p(s, t) defined in Theorem 3.5 is a weak solution of problem (1).
Moreover, it satisfies

‖p‖L∞((0,1)×(0,T)) ≤ exp(2cT)‖p0‖∞.

Proof The fact that p(s, t) is a weak solution with bounded TV follows from Lemma 3.1–3.4
and Lemma 16.9 on p. 280 of [21]. The bound on ‖p‖L∞((0,1)×(0,T)) is obtained by taking the limit
in the bounds of the difference approximation in Lemma 3.2. �

The following theorem guarantees the continuous dependence of the solution pk
i of Equation (4)

with respect to the initial condition p0
i .

Theorem 3.7 Let {pk
i } and {p̂k

i } be solutions of Equation (4) corresponding to the initial
conditions {p0

i } and {p̂0
i }, respectively. Then there exists a positive constant δ such that

‖pk+1 − p̂k+1‖1 ≤ (1 + δt)‖pk − p̂k‖1 for all k ≥ 0.
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10 A.S. Ackleh et al.

Proof Let uk
i = pk

i − p̂k
i for i = 0, 1, . . . , N and k = 0, 1, . . . , L. Then by Equation (5) uk

i satisfies

uk+1
i = �t

�s
(γ k

i−1pk
i−1 − γ̂ k

i−1p̂k
i−1) + (pk

i − p̂k
i ) − �t

�s
(γ k

i pk
i − γ̂ k

i p̂k
i )

− �t(μk
i p

k
i − μ̂k

i p̂
k
i ) +

N∑
j=1

(βk
i,jp

k
j − β̂k

i,j p̂
k
j )�s�t, 1 ≤ i ≤ N , 0 ≤ k ≤ L − 1,

uk+1
0 = pk+1

0 − p̂k+1
0 = 0, 0 ≤ k ≤ L − 1.

(14)

Here Q̂k = ∑N
i=1 p̂k

i , γ̂ k
i = γ (si, tk , Q̂k) and similar notation are used for μ̂k

i and β̂k
i,j. Using the

first part of Equation (14) and assumption (H5), we obtain

|uk+1
i | ≤

(
1 − �t

�s
γ k

i − �tμk
i

)
|uk

i | + �t

�s
γ k

i−1|uk
i−1| + �t|(γ k

i−1 − γ̂ k
i−1)p̂

k
i−1 − (γ k

i − γ̂ k
i )p̂k

i |

+ �t|μk
i − μ̂k

i |p̂k
i +

N∑
j=1

βk
i,j|μk

i |�s�t +
N∑

j=1

|βk
i,j − β̂k

i,j|p̂k
j �s�t

≤
⎡
⎣1 − μk

i �t +
⎛
⎝ N∑

j=1

βk
i,j�s

⎞
⎠ �t

⎤
⎦ |uk

i | − �t

�s
(γ k

i |uk
i | − γ k

i−1|uk
i−1|)

+ �t

�s
|(γ k

i−1 − γ̂ k
i−1)p̂

k
i−1 − (γ k

i − γ̂ k
i )p̂k

i | + |μk
i − μ̂k

i |p̂k
i �t +

N∑
j=1

|βk
i,j − β̂k

i,j|p̂k
j �s�t.

Multiplying the above inequality by �s and summing over i = 1, 2, . . . , N , we have

N∑
i=1

|uk+1
i |�s ≤

N∑
i=1

⎡
⎣1 − �tμk

i +
⎛
⎝ N∑

j=1

βk
i,j�s

⎞
⎠ �t

⎤
⎦ |uk

i |�s

− �t
N∑

i=1

(γ k
i |uk

i | − γ k
i−1|uk

i−1|) + �t
N∑

i=1

|(γ k
i−1 − γ̂ k

i−1)p̂
k
i−1 − (γ k

i − γ̂ k
i )p̂k

i |

+ �t
N∑

i=1

|μk
i − μ̂k

i |p̂k
i �s + �t

N∑
i=1

N∑
j=1

|βk
i,j − β̂k

i,j|p̂k
j �s�s. (15)

Here by assumptions (H2) and (H3)

N∑
i=1

⎡
⎣1 − μk

i �t +
⎛
⎝ N∑

j=1

βk
i,j�s

⎞
⎠ �t

⎤
⎦ |uk

i |�s ≤
N∑

i=1

(1 + c�t)|uk
i |�s = (1 + c�t)‖uk‖1. (16)

By assumption (H1) and the second part of Equation (14), one obtains

N∑
i=1

(γ k
i |uk

i | − γ k
i−1|uk

i−1|) = (γ k
N |μk

N | − γ k
0 |uk

0|) = γ k
0 |uk

0| = 0. (17)
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By assumption (H1),

N∑
i=1

|(γ k
i−1 − γ̂ k

i−1)p̂
k
i−1 − (γ k

i − γ̂ k
i )p̂k

i |

≤
N∑

i=1

|γ k
i−1 − γ̂ k

i−1||p̂k
i − p̂k

i−1| +
N∑

i=1

|(γ k
i − γ̂ k

i ) − (γ k
i−1 − γ̂ k

i−1)|p̂k
i

≤
N∑

i=1

|γQ(si−1, Q̄k)||Qk − Q̂k||p̂k
i − p̂k

i−1|

+
N∑

i=1

|γQ(si, Q̄k)(Qk − Q̂k) − γQ(si−1, Q̄k)(Qk − Q̂k)|p̂k
i

≤ |Qk − Q̂k| sup
D3

|γQ| TV(p̂k) + |Qk − Q̂k|
N∑

i=1

|γQ(si, Q̄k) − γQ(si−1, Q̄k)|p̂k
i

≤ |Qk − Q̂k|
[

sup
D3

|γQ| TV(p̂k) + c
N∑

i=1

p̂k
i �s

]

= |Qk − Q̂k|[sup
D3

|γQ| TV(p̂k) + c‖p̂k‖1], (18)

where Q̄k is between Qk and Q̂k .
By assumption (H2),

N∑
i=1

|μk
i − μ̂k

i |p̂k
i �s =

N∑
i=1

c|(Qk − Q̂k)|p̂k
i �s ≤ c|Qk − Q̂k|‖p̂k‖1. (19)

From assumption (H3) we obtain

N∑
i=1

N∑
j=1

|βk
i,j − β̂k

i,j|p̂k
j �s�s�t ≤ �t

N∑
i=1

N∑
j=1

c|Qk − Q̂k|p̂k
j �s�s

≤ c|Qk − Q̂k|�t
N∑

i=1

N∑
j=1

p̂k
j �s�s

≤ c|Qk − Q̂k|
⎛
⎝ N∑

j=1

p̂k
j �s

⎞
⎠ (

N∑
i=1

�s

)
�t

= c‖p̂k‖1|Qk − Q̂k|�t. (20)

A combination of Equations (15)–(20) and assumptions (H1)–(H3) implies that there exists a
positive constant M̃ such that

‖uk+1‖1 ≤ (1 + c�t)‖uk‖1 + M̃|Qk − Q̂k|�t.

Note that

|Qk − Q̂k| = |
N∑

i=1

(pk
i − p̂k

i )�s| ≤
N∑

i=1

|pk
i − p̂k

i |�s ≤
N∑

i=1

|uk
i |�s = ‖uk‖1.
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12 A.S. Ackleh et al.

Therefore,

‖uk+1‖1 ≤ (1 + c�t + M̃�t)‖uk‖1.

Let δ = c + M̃ and we obtain the result. �

In the next theorem we prove that the BV solution defined in Theorem 3.7 is unique using a
technique similar to that in [4].

Theorem 3.8 Suppose that p and p̂ are bounded variation weak solutions of problem (1) corre-
sponding to initial conditions {p0} and {p̂0}, respectively. Then there exists a positive constant ρ

such that

‖p(·, t) − p̂(·, t)‖1 ≤ ρ‖p(·, 0) − p̂(·, 0)‖1.

Proof Assume that Q is a given Lipschitz continuous function and consider the following initial-
boundary value problem:

∂

∂t
p(s, t) + ∂

∂s
(γ (s, Q(t))p(s, t)) = −μ(s, Q(t))p(s, t) +

∫ 1

0
β(s, y, Q(t))p(y, t) dy,

s ∈ (0, 1], t ∈ (0, T ],
γ (0, Q(t))p(0, t) = 0, t ∈ [0, T ],
p(s, 0) = p0(s), s ∈ [0, 1].

(21)

Since Equation (21) is a linear problem with local boundary conditions, it has a unique weak
solution. Actually, a weak solution can be defined as a limit of the finite difference approxima-
tion with the given numbers Qk = Q(tk) and the uniqueness can be established by using similar
techniques as in [24]. In addition, as in the proof of Theorem 3.7, we can show that if pk

i and
p̂k

i are solutions of the difference scheme (4) corresponding to the given functions Qk and Q̂k ,
respectively, then there exist positive constants c1 and c2 such that

‖uk+1‖1 ≤ (1 + c1�t)‖uk‖1 + c2|Qk − Q̂k|�t, (22)

with uk = pk − p̂k .
Equation (22) leads to

‖uk‖1 ≤ (1 + c1�t)k‖u0‖1 + c2�t
k−1∑
r=0

(1 + c1�t)r |Qk−r−1 − Q̂k−r−1|.

Hence

‖uk‖1 ≤ (1 + c1�t)k

(
‖u0‖1 + c2�t

k−1∑
r=0

|Qk−r−1 − Q̂k−r−1|
)

. (23)

Now from Theorem 3.5 one can take the limit in Equation (23) to obtain

‖u(·, t)‖1 ≤ ec1T

(
‖u0‖1 + c2

∫ t

0
|Q(l) − Q̂(l)| dl

)
, (24)

where u(·, t) = p(·, t) − p̂(·, t) and p(·, t) are the unique solutions of problem (21) with any set
of given functions Q(t) and Q̂(t). We then apply the estimate given in Equation (24) for the
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corresponding solutions of Equation (21) with two specific functions Q(t) and Q̂(t) which are
constructed using the limits obtained in Theorem 3.6 as follows:

Q(t) =
∫ 1

0
p(s, t) ds, Q̂(t) =

∫ 1

0
p̂(s, t) ds.

Thus, we have

|Q(t) − Q̂(t)| =
∣∣∣∣
∫ 1

0
p(s, t) ds −

∫ 1

0
p̂(s, t) ds

∣∣∣∣
≤

∫ 1

0
|p(s, t) − p̂(s, t)| ds

=
∫ 1

0
|u(s, t)| ds = ‖u(·, t)‖1.

Therefore, ∫ t

0
|Q(t) − Q̂(t)| dl ≤

∫ t

0
‖u(·, t)‖1 dl.

Thus,

‖u(·, t)‖1 ≤ ec1T

(
‖u0‖1 + c2

∫ t

0
‖u(·, t)‖1 dl

)
.

Using Gronwall’s inequality we have

‖u(·, t)‖1 ≤ e(c1T+c2T ec1T )‖u0‖1.

The result follows by letting ρ = e(c1T+c2T ec1T ). �

4. A second-order finite difference scheme

To achieve an accurate approximation the first-order upwind scheme we discussed in the previous
section would require many grid points and thus is time-consuming. In this section we develop
the following second-order finite difference scheme for the DSSM based on minmod MUSCL
schemes [15,20] (SOEM).

pk+1
i − pk

i

�t
+ f̂ k

i+1/2 − f̂ k
i−1/2

�s
= −μk

i p
k
i +

N∑
j=0

�

βk
i,jp

k
j �s, i = 1, 2, . . . , N , k = 0, 1, . . . , L − 1,

γ k
0 pk

0 = 0, k = 0, 1, . . . , L,
(25)

with the initial condition p0
i = p0(si). Here Qk is discretized using a second-order Trapezoidal

rule.
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14 A.S. Ackleh et al.

That is,

Qk =
N∑

i=0

�

pk
i �s = 1

2
pk

0�s +
N−1∑
i=1

pk
i �s + 1

2
pk

N�s.

Similarly,

N∑
j=0

�

βk
i,jp

k
j �s = 1

2
βk

i,0pk
0�s +

N−1∑
j=1

βk
i,jp

k
j �s + 1

2
βk

i,Npk
N�s.

The finite difference scheme (25) can be rewritten as

pk+1
i = pk

i − �t

�s
(f̂ k

i+1/2 − f̂ k
i−1/2) − μk

i p
k
i �t +

⎛
⎝ N∑

j=0

�

βk
i,jp

k
j �s

⎞
⎠ �t, i = 1, 2, . . . , N . (26)

Here the limiter is defined as

f̂ k
i+1/2 =

{
γ k

i pk
i + 1

2 (γ k
i+1 − γ k

i )pk
i + 1

2γ k
i mm(�+pk

i , �−pk
i ), i = 2, . . . , N − 2,

γ k
i pk

i , i = 0, 1, N − 1, N .
(27)

The minmod function mm is defined by

mm(a, b) = sign(a) + sign(b)

2
min(|a|, |b|).

Therefore,

0 � mm(a, b)

a
� 1 and 0 � mm(a, b)

b
� 1 ∀a, b �= 0.

As in [20] we define Bk
i and Dk

i by

Bk
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(
γ k

i+1 + γ k
i + γ k

i

mm(�+pk
i , �−pk

i )

�−pk
i

− γ k
i−1

mm(�−pk
i , �−pk

i−1)

�−pk
i

)
, i = 3, . . . , N − 2,

1

2

(
γ k

i+1 + γ k
i + γ k

i

mm(�+pk
i , �−pk

i )

�−pk
i

)
, i = 2,

1

2

(
2γ k

i − γ k
i−1

mm(�−pk
i , �−pk

i−1)

�−pk
i

)
, i = N − 1,

γ k
i , i = 1, N ,

Dk
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
(�+γ k

i + �−γ k
i ), i = 3, . . . , N − 2,

1

2
�+γ k

i + �−γ k
i , i = 2,

1

2
�−γ k

i , i = N − 1,

�−γ k
i , i = 1, N .

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
St

ir
lin

g 
L

ib
ra

ry
] 

at
 0

3:
06

 2
5 

A
ug

us
t 2

01
5 



Journal of Biological Dynamics 15

Note that

2(Bk
i − Dk

i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ k
i

(
1 + mm(�+pk

i , �−pk
i )

�−pk
i

)
+ γ k

i−1

(
1 − mm(�−pk

i , �−pk
i−1)

�−pk
i

)
, i = 3, . . . , N − 2,

2γ k
i−1 + γ k

i
mm(�+pk

i , �−pk
i )

�−pk
i

, i = 2,

γ k
i + γ k

i−1

(
1 − mm(�−pk

i , �−pk
i−1)

�−pk
i

)
, i = N − 1,

2γ k
i−1, i = 1, N .

One can easily see from assumption (H1) that

|Bk
i | � 3

2
sup
D1

|γ | � 3

2
c, Bk

i − Dk
i ≥ 0. (28)

The finite difference scheme (25) can then be written in a more compact way as follows:

pk+1
i =

(
1 − �t

�s
Bk

i − μk
i �t

)
pk

i + �t

�s
(Bk

i − Dk
i )p

k
i−1

+
⎛
⎝ N∑

j=0

�

βk
i,jp

k
j �s

⎞
⎠ �t for i = 1, 2, . . . , N . (29)

4.1. Estimates of the second-order finite difference approximations

From a biological point of view, it is very important that our scheme preserves non-negativity of
solutions. We will first show this property in the following lemma.

Lemma 4.1 The finite difference scheme (25) has a unique nonnegative solution.

Proof From assumption (H4), we have p0
i ≥ 0 for i = 0, 1, . . . , N . Also, by the second part of

Equation (25) and assumption (H1), pk
0 = 0 for k ≥ 0. Moreover, by assumptions (H1)–(H3) and

(H5), one observes that

1 − �t

�s
Bk

i − μk
i �t ≥ 1 − �t

�s

3

2
sup
D1

|γ | − sup
D1

|μ|�t ≥ 1 − �t

�s

3

2
c − c�t ≥ 0. (30)

Therefore, by induction it follows that pk
i ≥ 0 for i = 1, 2, . . . , N , k ≥ 1, and thus the system

has a unique nonnegative solution. �

The next lemma shows that the numerical approximations are bounded in �1 norm.

Lemma 4.2 For some positive constant M5, the following estimate holds:

‖pk‖1 ≤ exp(cT)‖p0‖1 ≡ M5 for k = 0, 1, . . . , L. (31)
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16 A.S. Ackleh et al.

Proof Multiplying the first part of (26) by �s and summing over i = 1, 2, . . . , N , we have

‖pk+1‖1 =
N∑

i=1

pk
i �s −

N∑
i=1

(f̂ k
i+1/2 − f̂ k

i−1/2)�t −
N∑

i=1

μk
i p

k
i �t�s +

N∑
i=1

⎛
⎝ N∑

j=0

�

βk
i,jp

k
j �s

⎞
⎠ �s�t

= ‖pk‖1 − (γ k
Npk

N − γ k
0 pk

0)�t −
N∑

i=1

μk
i p

k
i �s�t +

N∑
i=1

⎛
⎝ N∑

j=0

�

βk
i,jp

k
j �s

⎞
⎠ �s�t.

Therefore, by assumptions (H1)–(H3) one can see that

‖pk+1‖1 ≤ ‖pk‖1 +
N∑

i=1

⎛
⎝ N∑

j=0

�

βk
i,j�spk

j

⎞
⎠ �s�t

≤ ‖pk‖1 + c
N∑

i=1

‖pk‖1�s�t

≤ (1 + c�t)‖pk‖1,

which implies the estimate. �

Note that

Qk =
N∑

i=0

�

pk
i �s =

N∑
i=1

pk
i �s − 1

2
pk

N�s �
N∑

i=1

pk
i �s = ‖pk‖1 ≤ M5.

We now define D4 = [0, 1] × [0, M5].
The following lemma establishes l∞ bounds of the numerical approximations.

Lemma 4.3 There exists a positive constant M6 such that

‖pk‖∞ � M6 for k = 0, 1, . . . , L.

Proof If ‖pk‖∞ is obtained at the left boundary, then ‖pk‖∞ = pk
0 = 0 for k ≥ 0. Otherwise,

assume that pk+1
i = ‖pk+1‖∞, for some 1 � i � N . From Equation (29), assumptions (H1)–(H3)

and (H5) we have

‖pk+1‖∞ �
(

1 − �t

�s
Bk

i − μk
i �t

)
‖pk‖∞ + �t

�s
(Bk

i − Dk
i )‖pk‖∞ +

⎛
⎝ N∑

j=0

�

βk
i,j�s

⎞
⎠ ‖pk‖∞�t

� (1 + c�t)‖pk‖∞ − �t

�s
Dk

i ‖pk‖∞.

By assumption (H1), |γ k
i − γ k

i−1| = |γs(ŝi, Qk)|�s � c�s and thus −Dk
i ≤ 3

2 c�s.
Therefore,

‖pk+1‖∞ � (1 + 5
2 c�t)k+1‖p0‖∞.

The result then follows easily from the above inequality. �
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In the next lemma we show that the approximations pk
i are of bounded TV.

Lemma 4.4 There exists a constant M7 such that

TV(pk) � M7 for k = 0, 1, . . . , L.

Proof From Equation (29), we have

pk+1
i+1 − pk+1

i =
(

1 − �t

�s
Bk

i+1

)
(pk

i+1 − pk
i ) + �t

�s
(Bk

i − Dk
i )(p

k
i − pk

i−1) − �t

�s
(Dk

i+1 − Dk
i )p

k
i

− �t(μk
i+1pk

i+1 − μk
i p

k
i ) +

⎛
⎝ N∑

j=0

�

βk
i+1,jp

k
j �s

⎞
⎠ �t −

⎛
⎝ N∑

j=0

�

βk
i,jp

k
j �s

⎞
⎠ �t,

for i = 1, . . . , N − 1.
Therefore,

TV(pk+1) = |pk+1
1 − pk+1

0 | +
N−1∑
i=1

|pk+1
i+1 − pk+1

i |

� |pk+1
1 − pk+1

0 | +
N−1∑
i=1

∣∣∣∣
(

1 − �t

�s
Bk

i+1

)
(pk

i+1 − pk
i ) + �t

�s
(Bk

i − Dk
i )(p

k
i − pk

i−1)

∣∣∣∣
+

N−1∑
i=1

|Dk
i+1 − Dk

i |pk
i

�t

�s
+

N−1∑
i=1

|μk
i+1pk

i+1 − μk
i p

k
i |�t

+
N−1∑
i=1

∣∣∣∣∣∣
N∑

j=0

�

βk
i+1,jp

k
j �s −

N∑
j=0

�

βk
i,jp

k
j �s

∣∣∣∣∣∣ �t

= |pk+1
1 − pk+1

0 | + I1 + I2 + I3 + I4. (32)

We now estimate the bound of TV(pk) term by term.

|pk+1
1 − pk+1

0 | =
(

1 − �t

�s
Bk

1 − μk
1�t

)
pk

1 + �t

�s
(Bk

1 − Dk
1)p

k
0 +

⎛
⎝ N∑

j=0

�

βk
1,jp

k
j �s

⎞
⎠ �t

=
(

1 − �t

�s
γ k

1 − μk
1�t

)
pk

1 +
⎛
⎝ N∑

j=0

�

βk
1,jp

k
j �s

⎞
⎠ �t. (33)

By assumptions (H1) and (H5),

I1 �
N−1∑
i=1

(
1 − �t

�s
Bk

i+1

)
|pk

i+1 − pk
i | + �t

�s
(Bk

i − Dk
i )|pk

i − pk
i−1|

�
N−1∑
i=1

|pk
i+1 − pk

i | − �t

�s

N−1∑
i=1

(Bk
i+1|pk

i+1 − pk
i | − Bk

i |pk
i − pk

i−1|) − �t

�s

N−1∑
i=1

Dk
i |pk

i − pk
i−1|

�
N−1∑
i=1

|pk
i+1 − pk

i | − �t

�s
(Bk

N |pk
N − pk

N−1| − Bk
1|pk

1 − pk
0|) − �t

�s

N−1∑
i=1

Dk
i |pk

i − pk
i−1|
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18 A.S. Ackleh et al.

�
N−1∑
i=1

|pk
i+1 − pk

i | + �t

�s
γ k

1 pk
1 + �t

�s

N−1∑
i=1

3

2
sup
D4

|γ k
i − γ k

i−1| |pk
i − pk

i−1|

�
N−1∑
i=1

|pk
i+1 − pk

i | + �t

�s
γ k

1 pk
1 + 3

2
c TV(pk)�t. (34)

By assumption (H1),

I2 =
N−3∑
i=3

|Dk
i+1 − Dk

i |pk
i

�t

�s
+

∑
i=1,2,N−2,N−1

|Dk
i+1 − Dk

i |pk
i

�t

�s

�
N−3∑
i=3

|Dk
i+1 − Dk

i |pk
i

�t

�s
+ 8 sup

D4

|Dk
i |pk

i

�t

�s

�
N−3∑
i=3

|Dk
i+1 − Dk

i |pk
i

�t

�s
+ 12c ‖ pk ‖∞ �t. (35)

From assumption (H1) we have

|Dk
i+1 − Dk

i | = 1
2 |(�+γ k

i+1 + �−γ k
i+1) − (�+γ k

i + �−γ k
i )|

= 1
2 |(γ k

i+2 − γ k
i+1) − (γ k

i − γ k
i−1)|

= 1
2 |γs(ŝi+2, Qk)�s − γs(ŝi, Qk)�s|

≤ 1
2 c|ŝi+2 − ŝi|�s = c(�s)2, (36)

where ŝi ∈ [si−1, si] and ŝi+2 ∈ [si+1, si+2] for i = 3, 4, . . . , N − 3.
Therefore by combining Equations (35) and (36) we obtain

I2 �
N−3∑
i=3

c(�s)2pk
i

�t

�s
+ 12c‖pk‖∞�t � c‖pk‖1�t + 12c‖pk‖∞�t. (37)

We have from assumption (H2) that

I3 =
N−1∑
i=1

|(μk
i+1 − μk

i )p
k
i+1 + μk

i (p
k
i+1 − pk

i )|�t

≤ c�s
N−1∑
i=1

pk
i+1�t + sup

D4

μ

N−1∑
i=1

|pk
i+1 − pk

i |�t

≤ c‖pk‖1�t + c TV(pk)�t. (38)

By assumption (H3),

I4 ≤
N∑

j=0

� (
N−1∑
i=1

|βk
i+1,j − βk

i,j|
)

pk
j �s�t ≤ c

N∑
j=0

�

pk
j �s�t ≤ c‖pk‖1�t. (39)
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A combination of Equations (32)–(39) then leads to

TV(pk+1) =
(

1 − �t

�s
γ k

1 − μk
1�t

)
pk

1 +
⎛
⎝ N∑

j=0

�

βk
1,jp

k
j �s

⎞
⎠ �t +

N−1∑
i=1

|pk
i+1 − pk

i | + �t

�s
γ k

1 pk
1

+ 3

2
c�t TV(pk) + c‖pk‖1�t + 12c|pk‖∞�t + c‖pk‖1�t

+ c TV(pk)�t + c‖pk‖1�t

≤ (1 + c1�t)TV(pk) + c2�t, (40)

where c1 = 5
2 c and c2 = 4cM5 + 12cM6. The result then follows. �

Next we will show that the finite difference approximations are �1 Lipschitz continuous in t.

Lemma 4.5 There exists a positive constant M8 such that for any m > n > 0 the following
estimates hold:

N∑
i=1

∣∣∣∣pm
i − pn

i

�t

∣∣∣∣ �s ≤ M8(m − n).

Proof From Equation (29) and assumptions (H1)–(H3), we have

N∑
i=1

∣∣∣∣∣pk+1
i − pk

i

�t

∣∣∣∣∣ �s =
N∑

i=1

| − Bk
i pk

i − μk
i p

k
i �s + Bk

i pk
i−1 − Dk

i pk
i−1 +

N∑
j=0

�

βk
i,jp

k
j �s�s|

≤ 3

2
sup
D4

γ

N∑
i=1

|pk
i − pk

i−1| + sup
D4

μ‖pk‖1 +
N∑

i=1

3

2
sup
D4

|γ k
i+1 − γ k

i |pk
i−1

+
N∑

i=1

N∑
j=0

�

sup
D4

|β|pk
j �s�s

≤ 3

2
c TV(pk) + c‖pk‖1 + 3

2
c‖pk‖1 + c‖pk‖1. (41)

Thus by Lemmas 4.2 and 4.4 there exists a positive constant M8 such that

N∑
i=1

∣∣∣∣∣pk+1
i − pk

i

�t

∣∣∣∣∣ �s ≤ M8.

Therefore,
N∑

i=1

∣∣∣∣pm
i − pn

i

�t

∣∣∣∣ �s ≤
N∑

i=1

m−1∑
k=n

∣∣∣∣∣pk+1
i − pk

i

�t

∣∣∣∣∣ �s ≤ M8(m − n).

�

4.2. Convergence of the second-order finite difference approximations

We again follow similar notation as in [21] and define a set of functions {P�s,�t} by {P�s,�t(s, t)} =
pk

i for s ∈ [si−1, si), t ∈ [tk−1, tk), i = 1, 2, . . . , N and k = 1, 2, . . . , L. Then by Lemmas 4.2–4.5,
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20 A.S. Ackleh et al.

the set of functions {P�s,�t} is compact in the topology of L1((0, 1) × (0, T)). Hence following
the proof of Lemma 16.7 on p. 276 in [21] we obtain the following result.

Theorem 4.6 There exists a subsequence of functions {P�sr ,�tr } ⊂ {P�s,�t} which converges to
a function p ∈ BV([0, 1] × [0, T ]) in the sense that for all t > 0,

∫ 1

0
|P�sr ,�tr − p(s, t)| ds −→ 0,

∫ T

0

∫ 1

0
|P�sr ,�tr − p(s, t)| ds dt −→ 0

as r → ∞ (i.e. �ar , �sr , �tr → 0). Furthermore, there exist constants M9 depending on
‖p0‖BV([0,1]×[0,T ]) such that the limit function satisfies

‖p‖BV([0,1]×[0,T ]) ≤ M9.

We show in the next theorem that the limit function p(s, t) constructed by the finite difference
scheme is a weak solution to problem (1).

Theorem 4.7 The limit function p(s, t) defined in Theorem 4.6 is a weak solution of the DSSM.
Moreover, it satisfies

‖p‖L∞((0,1)×(0,T)) ≤ exp( 5
2 cT)‖p0‖∞.

Proof Let φ ∈ C1([0, 1] × [0, T ]) and denote the value of φ(si, tk) by φk
i .

Multiplying Equation (26) by φk+1
i and rearranging some terms we have

pk+1
i φk+1

i − pk
i φ

k
i = pk

i (φ
k+1
i − φk

i ) + �t

�s
[f̂ k

i−1/2(φ
k+1
i − φk+1

i−1 ) + (f̂ k
i−1/2φ

k+1
i−1 − f̂ k

i+1/2φ
k+1
i )]

− μk
i p

k
i φ

k+1
i �t +

N∑
j=0

�

βk
i,jp

k
j φ

k+1
i �s�t. (42)

Multiplying the above equation by �s, summing over i = 1, 2, . . . , N , k = 0, 1, . . . , L − 1, and
applying pk

0 = 0 and γ k
N = 0 we obtain,

N∑
i=1

(pL
i φ

L
i − p0

i φ
0
i )�s =

L−1∑
k=0

N∑
i=1

pk
i

φk+1
i − φk

i

�t
�s�t

+
L−1∑
k=0

N−1∑
i=0

f̂ k
i+1/2

φk+1
i+1 − φk+1

i

�s
�s�t −

L−1∑
k=0

N∑
i=1

μk
i p

k
i φ

k+1
i �s�t

+
L−1∑
k=1

N∑
i=1

N∑
j=1

�

βk
i,jp

k
j φ

k+1
i �s�t�s. (43)
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Note that by Equation (27), one has

L−1∑
k=0

N−1∑
i=0

f̂ k
i+1/2

φk+1
i+1 − φk+1

i

�s
�s�t =

L−1∑
k=0

[
γ k

0 pk
0 + γ k

1 pk
1 + γ k

N−1pk
N−1

+
∑
i∈J1

γ k
i + γ k

i+1

2
pk

i +
∑
i∈J2

γ k
i+1pk

i + γ k
i pk

i+1

2

+
∑
i∈J3

γ k
i+1pk

i + 2γ k
i pk

i − γ k
i pk

i−1

2

]
φk+1

i+1 − φk+1
i

�s
�s�t,

(44)

where J1 = {2 ≤ i ≤ N − 2 : sign(�+pk
i ) sign(�−pk

i ) = −1, or sign(�+pk
i ) sign(�−pk

i ) =
0}, J2 = {2 ≤ i ≤ N − 2 : �−pk

i ≥ �+pk
i > 0, or �−pk

i ≤ �+pk
i < 0}, J3 = {2 ≤ i ≤ N −

2 : �+pk
i > �−pk

i > 0, or �+pk
i < �−pk

i < 0}. One can easily check that J1 ∪ J2 ∪ J3 =
{2, 3, . . . , N − 3, N − 2}. Now we could rewrite Equation (43) as

N∑
i=1

(pL
i φ

L
i − p0

i φ
0
i )�s =

L−1∑
k=0

N∑
i=1

pk
i

φk+1
i − φk

i

�t
�s�t +

L−1∑
k=0

[
γ k

0 pk
0 + γ k

1 pk
1 + γ k

N−1pk
N−1

+
∑
i∈J1

γ k
i + γ k

i+1

2
pk

i +
∑
i∈J2

γ k
i+1pk

i + γ k
i pk

i+1

2

+
∑
i∈J3

γ k
i+1pk

i + 2γ k
i pk

i − γ k
i pk

i−1

2

]
φk+1

i+1 − φk+1
i

�s
�s�t

−
L−1∑
k=0

N∑
i=1

μk
i p

k
i φ

k+1
i �s�t +

L−1∑
k=1

N∑
i=1

N∑
j=1

�

βk
i,jp

k
j φ

k+1
i �s�t�s. (45)

Since pk
i is piecewise constant and φ is smooth, and the integrals are limits of step functions,

we have∫ 1

0
P�s,�t(s, t)φ(s, t) ds + δ1 −

∫ 1

0
P�s,�t(s, 0)φ(s, 0) ds + δ2

=
∫ t

0

∫ 1

0
P�s,�t(s, τ)φτ (s, τ) ds dτ + δ3 +

∫ t

0

{∫ �s

0
γ (s, Q(τ ))P�s,�t(s, τ)φs(s, τ) ds

+
∫ 1

1−�s
γ (s, Q(τ ))P�s,�t(s, τ)φs(s, τ) ds +

∫
J1

γ (s, Q(τ ))P�s,�t(s, τ)φs(s, τ) ds

+
∫

J2

γ (s, Q(τ ))P�s,�t(s, τ)φs(s, τ) ds +
∫

J3

γ (s, Q(τ ))P�s,�t(s, τ)φs(s, τ) ds

}
dτ + δ4

−
∫ t

0

∫ 1

0
P�s,�t(s, τ)μ(s, Q(τ ))φ(s, τ) ds dτ + δ5

+
∫ t

0

∫ 1

0
φ(s, τ)

∫ 1

0
P�s,�t(s, τ)β(s, y, Q(τ )) dy ds dτ + δ6. (46)

δi → 0, i = 1, 2, . . . , 6, as �s, �t → 0 and by the choice of the initial values
∫ 1

0 P�s,�t(s, 0)φ(s, 0)

ds → ∫ 1
0 p0(s)φ(s, 0) ds as �s → 0. By Theorem 4.6

∫ 1
0 |P�s,�t − p(s, t)| ds → 0 and
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22 A.S. Ackleh et al.

∫ t
0

∫ 1
0 |P�s,�t − p(s, t)| ds dt → 0 as �s, �t → 0. Combining the above fact and Equation (46)

and following a similar argument used in the proof of Lemma (16.9) on p. 280 of [21], we can show
that the limit of the difference approximations in Theorem 4.6 is a weak solution to problem (1).
The bound on ‖p‖L∞ is obtained by taking the limit in the bounds of the difference approximation
in Lemma 4.3. �

Remark The scheme (25) is of second order in space (except at the boundary) but only first
order in time. To obtain second-order accuracy in time we will use the following TV diminishing
Runge–Kutta time discretization: Let

p(1)
i = pk

i − �t

�s
(f̂ k

i+1/2 − f̂ k
i−1/2) − μk

i p
k
i �t +

⎛
⎝ N∑

j=0

�

βk
i,jp

k
j �s

⎞
⎠ �t, i = 1, 2, . . . , N ,

p(1)
0 = 0,

Q(1) =
N∑

i=0

�

p(1)
i �s

(47)

and compute

pk+1
i = 1

2

⎛
⎝pk

i + p(1)
i − �t

�s
(f̂ (1)

i+1/2 − f̂ (1)
i−1/2) − μ

(1)
i p(1)

i �t +
⎛
⎝ N∑

j=0

�

β
(1)
i,j p(1)

j �s

⎞
⎠ �t

⎞
⎠ ,

i = 1, 2, . . . , N ,

pk+1
0 = 0,

Qk+1 =
N∑

i=0

�

pk+1
i �s,

(48)

where in Equations (47)–(48) we use the notation μ
(1)
i = μ(si, Q(1)) and β

(1)
i,j = β(si, yj, Q(1)).

As for f̂ (1)
i+1/2, it is the same as f̂ k+1

i+1/2 with p(1)
i replacing pk+1

i and γ (si, Q(1)) replacing γ k+1
i =

γ (si, Qk+1). This gives a second-order scheme in both space and time which shares the same
stability and convergence properties as scheme (25) (see [12]).

5. Weak* connection between CSSM and DSSM

The aim of this section is to establish a relationship between solutions of the single state-at-birth
model CSSM and the distributed states-at-birth model DSSM. In particular, we show that if the
distribution of new recruits in the DSSM becomes concentrated at the left-boundary (s = 0), then
solutions of the DSSM converge to solutions of the CSSM in the weak* topology. To this end, we
have the following theorem:

Theorem 5.1 Let {βn(s, y, Q)}n≥1 be a sequence of reproductive functions of DSSM. Assume
βn(s, y, Q) = β1,n(s)β2(y, Q) such that

(A) β2 ∈ C1([0, 1] × [0, ∞)) and 0 ≤ β2(y, Q) ≤ c.
(B) β1,n ∈ C1([0, 1]) and

∫ 1
0 β1,n(s) ds = 1 for each n ≥ 1.

(C) For every test function ξ ∈ C[0, 1], ∫ 1
0 β1,n(s)ξ(s) ds → ξ(0), as n → ∞.
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Then the weak solution pn of DSSM (1) corresponding to βn converges to the weak solution,
p̂, of CSSM (2) in the weak* topology, i.e. as n → ∞,

∫ 1
0 pn(s, t)η(s) ds → ∫ 1

0 p̂(s, t)η(s) ds for
every η ∈ C[0, 1].

Proof It can be seen that βn satisfies assumption (H3). Thus for each βn, there exists a weak
solution pn of DSSM (1) which satisfies Equation (3). We denote the total population by Qn(t) =∫ 1

0 pn(s, t) ds. Now, let φ ≡ 1 in (3) and apply property (B) we get

∫ 1

0
pn(s, t) ds −

∫ 1

0
p0(s) ds = −

∫ t

0

∫ 1

0
pn(s, τ)μ(s, Qn(τ )) ds dτ

+
∫ t

0

∫ 1

0
β2(y, Qn(τ ))pn(y, τ) dy dτ . (49)

Since μ ≥ 0 and pn ≥ 0, By (A) one has

‖pn(·, t)‖1 ≤ ‖p0‖1 + c
∫ t

0
‖pn(·, τ)‖1 dτ . (50)

Using Gronwall’s inequality, we have

‖pn(·, t)‖1 ≤ exp(ct)‖p0‖1 ≤ exp(cT)‖p0‖1. (51)

Combining Equation (51) and assumption (H4) one can easily see that the solutions pn

of DSSM are bounded in L1 norm uniformly in n. Thus, there exists a subsequence {pni}
of {pn} that converges in the weak* topology to p̂ as ni → ∞. More specifically, for every
η ∈ C[0, 1], ∫ 1

0 pni(s, t)η(s) ds → ∫ 1
0 p̂(s, t)η(s) ds as ni → ∞. Letting η ≡ 1, we get Qni → Q̂

as ni → ∞. Since by assumption (H1), γ (s, Q) is continuously differentiable with respect to s
and Q, γ (s, Qni) → γ (s, Q̂), as ni → ∞. Similarly, applying assumptions (H2) and (A) one gets
μ(s, Qni) → μ(s, Q̂) and β2(s, Qni) → β2(s, Q̂) as ni → ∞.

Now letting ni → ∞ in Equation (3) and applying (C) we obtain

∫ 1

0
p̂(s, t)φ(s, t) ds −

∫ 1

0
p0(s)φ(s, 0) ds

=
∫ t

0

∫ 1

0
p̂(s, τ)[φτ (s, τ) + γ (s, Q̂(τ ))φs(s, τ) − μ(s, Q̂(τ ))φ(s, τ)] ds dτ

+
∫ t

0
φ(0, τ)

∫ 1

0
β2(y, Q̂(τ ))p̂(y, τ) dy dτ , (52)

for any φ ∈ C1([0, 1] × [0, T ]). Therefore p̂ satisfies Equation (1.2) in [4] and thus is a weak
solution of the CSSM with the initial condition p0(s) and reproduction function β2(s, Q). Since the
weak solution of CSSM is unique [4] we get that pn → p̂ the unique weak solution of CSSM. �

6. Numerical simulations and examples

In this section we present several numerical simulations to demonstrate the performance of the
FOEU scheme (4) and the second-order explicit scheme (25) developed in the previous sections.
To better demonstrate their capability in solving the DSSM we compare the schemes with another
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second-order explicit upwind (SOEU) method [19], which is given by

pk+1
i − pk

i

�t
+ γ k

i pk
i

�s
= −μk

i p
k
i +

N∑
j=0

�

βk
i,jp

k
j �s, i = 1,

pk+1
i − pk

i

�t
+ 3γ k

i pk
i − 4γ k

i−1pk
i−1

�s
= −μk

i p
k
i +

N∑
j=0

�

βk
i,jp

k
j �s, i = 2,

pk+1
i − pk

i

�t
+ 3γ k

i pk
i − 4γ k

i−1pk
i−1 + γ k

i−2pk
i−2

�s
= −μk

i p
k
i +

N∑
j=0

�

βk
i,jp

k
j �s,

3 ≤ i ≤ N , 0 ≤ k ≤ L − 1,

γ k
0 pk

0 = 0, 0 ≤ k ≤ L,

p0
i = p0(si), 0 ≤ i ≤ N .

(53)

Here Qk is discretized by the same Trapezoidal rule as used in scheme (25). We also uti-
lize scheme (25) to investigate the connection between the two population models: DSSM and
CSSM.At last we apply the numerical scheme (25) to show supercritical Hopf-bifurcation in a dis-
tributed states-at-birth model. Throughout this section we use uniformly spaced grid points for both
s and t.

6.1. Validation of the numerical methods against an exact solution

This example is merely designed to test the order of accuracy of the schemes for smooth solutions
and thus may be biologically irrelevant. To this end we choose the parameter values such that
the resulting model is nonlinear and would yield an exact solution. Let the initial condition be
p0(s) = s. The rest of the parameter values are chosen to be the following:

T = 8.0,

β(s, y, Q) = 1 + 4sQ,

γ (s, Q) = (1 − s)

2
,

μ(s, Q) = 2Q.

With this choice of model ingredients it can be easily verified that p(s, t) = s et is an exact
solution of the DSSM. Given the exact solution, we can show numerically the order of accuracy
of the schemes by means of an error table. We ran seven simulations for each scheme with step
sizes being halved with each successive simulation. Then we calculated the corresponding L1

norm of the error in each simulation for all schemes. In the initial simulation we let N = 10 and
L = 40. Based on these consecutive L1 errors we calculated the orders of accuracy, and listed the
results in Table 1. This table indicates that the designed order of accuracy is obtained by all three
schemes for this smooth solution of the model.
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Table 1. L1 errors and orders of accuracy for FOEU, SOEU and SOEM schemes.

FOEU SOEU SOEM

N L L1 error Order L1 error Order L1 error Order

10 40 2.51E−1 3.68E−3 6.30E−3
20 80 1.15E−1 1.12 9.63E−4 1.94 1.66E−3 1.92
40 160 5.56E−2 1.05 2.50E−4 1.95 4.33E−4 1.94
80 320 2.74E−2 1.02 6.39E−5 1.97 1.11E−4 1.97
160 640 1.36E−2 1.01 1.62E−5 1.98 2.81E−5 1.98
320 1280 6.78E−3 1.00 4.07E−6 1.99 7.07E−5 1.99
640 2560 3.39E−3 1.00 1.02E−6 2.00 1.77E−6 1.99

1 2 3 4 5 6 7
−6

−5

−4

−3

−2

−1

0

Simulations

lo
g10

 (
L

1  
no

rm
 o

f 
th

e 
er
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r)

FOEU
SOEU
SOEM

Figure 1. The logarithmic value of L1 norm of the errors for FOEU, SOEU and SOEM schemes in seven simulations.

To have a better understanding of the order of accuracy, we plot the logarithmic value of the
L1 norm of the errors for all three schemes in Figure 1. Combining Table 1 and Figure 1, one can
see clearly that the two second-order methods SOEU and SOEM perform almost equally well in
this case when the model parameters and solutions are smooth functions. Also it seems that to
get a similar accuracy as obtained in the second-order methods, the first-order method requires to
adopt step sizes at least 32 times smaller.

6.2. Behaviour at discontinuity

The superiority of the SOEM scheme over both FOEU and SOEU methods is clear once solutions
become discontinuous. To show this, we set the initial condition in the DSSM as

p0(s) =

⎧⎪⎨
⎪⎩

0.5, 0 ≤ s < 0.25,

1, 0.25 ≤ s ≤ 0.75,

0.5, 0.75 < s ≤ 1,
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Figure 2. The size distributions at time t = 1 are plotted for all three schemes for m = 1, 10, 100 and 1000.

and choose the following model ingredients:

β(s, y, Q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, s ≤ y − 1

2m
,

m, y − 1

2m
≤ s ≤ y + 1

2m
,

0, s > y + 1

2m
,

γ (s, Q) = (1 − s)

2
,

μ(s, Q) = 2 exp(0.1Q),

with m being a positive constant.
The above parameter choices introduce several discontinuities in the solution: two that arise

from the initial condition and another that arises from the incompatibility of the boundary and
initial condition at the origin. In the numerical simulations we use T = 1.0, N = 400 and L = 800.
The results corresponding to different values of m for all three methods are shown in Figure 2.
One can observe that SOEM scheme performs better than both the FOEU and SOEU schemes.
It demonstrates sharper accuracy in capturing the discontinuity in the solution than both upwind
schemes without generating (decaying) spurious oscillations.
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6.3. Numerical verification of the convergence of solutions of DSSM to CSSM

In this section we provide some numerical corroboration to Theorem 5.1. To this end, we set the
initial condition to be p0(s) = s3 and the parameters involved in the DSSM as follows:

γ (s, Q) = 1
2 (1 − s),

μ(s, Q) = 1.

To invoke Theorem 5.1 let

β1(s, a, b) = sa−1(1 − s)b−1

B(a, b)
, s ∈ [0, 1], (54)

be the Beta probability density function with parameters a and b; while

B(a, b) =
∫ 1

0
xa−1(1 − x)b−1 dx

is the Beta function.
Note that the expected value (mean) of the Beta distribution random variable s with two

parameters a and b given in Equation (54) is 1/(1 + b/a). Therefore, as b/a → ∞, the mean
is located at the left boundary, s = 0. That is, when b/a → ∞, the beta distribution becomes a
one point Degenerate distribution with a Dirac delta function spike at s = 0 with 100% prob-
ability (absolute certainty) [18]. Based on this property of Beta distribution, we fix a > 1 and
choose a sequence bn → ∞. It is easy to check that the sequence of fertility functions of DSSM
βn(s, y, Q) = β1(s; a, bn)β2(y, Q) with β2 ≡ 1 satisfies the conditions in Theorem 5.1. Thus, this
theorem states that the solutions of the DSSM will converge to the solution of CSSM with fertil-
ity β2 = 1 in the weak* topology. The numerical results we present below demonstrate that this
convergence may actually hold in a stronger topology, namely L1.

In the numerical simulations presented below, we choose a = 1.01 and b = 50, 75, 100, respec-
tively. The graphs of the fertility function β corresponding to these values of b are shown in Figure 3
(left). To simulate the CSSM, we let the fertility β2 = 1 and for all other parameters we use the
same values given above for DSSM. We then apply SOEM for solving the DSSM and CSSM.
The results of the densities of DSSM and CSSM at T = 0.8 are presented in Figure 3 (right).
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Figure 3. Left: The graph of the distributed recruitment rate β1(s, a, b) for a = 1.01 and b = 50, 75, 100. Right: The
solution p(s, 0.8) for DSSM corresponding to a = 1.01 and b = 50, 75, 100 against the solution p(s, 0.8) for CSSM.
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6.4. Supercritical Hopf-bifurcation

We present a ‘toy model’ here, in which a unique positive steady-state loses its stability via
Hopf-bifurcation. This example is further interesting, since as we will see, the net reproduction
function is decreasing at the steady state (i.e. its derivative is negative) but the steady state is
unstable. In fact this is the only case when stability can be lost via Hopf-bifurcation, since if the
model ingredients are such that the derivative of the net reproduction function is positive then the
governing linear semigroup is positive, see e.g. [10]. To illustrate the main ideas first we introduce
a simple example for the classical Gurtin–MacCamy-type model, and then we perform numerical
simulations to show that supercritical Hopf-bifurcation occurs in a corresponding distributed
states-at-birth model, too.

Let γ ≡ 1 and the mortality rate μ = μ(s). Assume that the survival probability π(s) =
exp{− ∫ s

0 μ(τ) dτ } is given by

π(s) =
{

1, s ∈ [0, sc],
0, s ∈ [sc, 1], (55)

β(s, Q) =
{

0, s ∈ [0, q) ∪ (q + ε, 1], Q ∈ [0, ∞),

e−QR̃ε−1, s ∈ [q, q + ε], Q ∈ [0, ∞),
(56)

where R̃ > 1, ε > 0, and 0 < q < sc < 1. Note that in this example both the fertility and mortality
functions are discontinuous. With this choice of the survival probability and fertility function the
net reproduction function reads:

R(Q) =
∫ q+ε

q
e−QR̃ε−1 ds = R̃ e−Q.

Hence for any R̃ > 1 there is a unique positive steady state with total population size Q∗ = ln(R̃).
We have

p∗(0) = Q∗∫ 1
0 π(s) ds

= sc
−1 ln(R̃) and p∗(s) = sc

−1 ln(R̃)π(s).

The characteristic equation corresponding to the linearized system at the positive steady state
reads (see e.g. [10]):

1 = K(λ) =
∫ 1

0
β(s, Q∗)π(s) e−λs ds +

∫ 1

0
π(s) e−λs ds

∫ 1

0
sc

−1 ln(R)βQ(s, Q∗)π(s) ds

= e−λq 1 − e−λε

λε
− sc

−1 ln(R̃)
1 − e−λsc

λ
. (57)

In the limit as ε → 0 the characteristic equation (57) reduces to:

1 = e−λq − sc
−1 ln(R̃)

1 − e−λsc

λ
. (58)

We look first for pure imaginary roots of the characteristic equation (58), i.e. assume that λ = iα
for some α ∈ R \ {0}. For such an eigenvalue equation (58) reads:

1 = (cos(αq) − i sin(αq)) + iα−1sc
−1 ln(R̃)(1 − cos(αsc) + i sin(αsc)), (59)
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which is equivalent to

1 = cos(αq) − α−1sc
−1 ln(R̃) sin(αsc), (60)

0 = − sin(αq) − α−1sc
−1 ln(R̃)(cos(αsc) − 1). (61)

Straightforward calculations show that for q = 1
6 , sc = 1

2 and for ln(R̃) = 3π/2 equations (60)–
(61) admit the solution λ = 3π i. Next we would like to show that the pair of purely imaginary
eigenvalues λ1/2 = ±3π i cross the y-axis to the right. To this end we write sc

−1 ln(R̃) = 3π + r
and λ = q + 3π i, where r, q ∈ R. The characteristic equation (58) reads:

1 = −ie−q/6 − r + 3π

q + 3π i
(1 − ie−r/2),

which leads to

3π = −q e−q/6 + (r + 3π) e−r/2,

q = 3π e−q/6 − r − 3π ⇒ r + 3π = 3π e−q/6 − q.

Hence for r < 0 ( ⇐⇒ sc > 0.5) small enough the eigenvalue λ = q + 3π i will have a positive
real part. Next we note that the continuous dependence of the eigenvalues on the parameter ε (see
e.g. [13, Ch. IV.3.5]) implies that for ε > 0 small enough the eigenvalue will still have a positive
real part.

Our next numerical example demonstrates, for the first time as far as we know, that such
bifurcation may also occur in the DSSM. This is somewhat surprising mainly because the integral
operator representing the distributed states-at-birth may have a smoothing effect, in general. We
let p0 = s and

γ = 1,

μ = 160

(250000s2 − 250000s + 62505)(0.32 arctan(250 − 500s) + 2)
,

β = β1(s, Q)β2(y),
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Figure 4. Left: A comparison of the total population sizes Q(t) for a = 6, 26, 46; Right: Bifurcation graph of Q with
respect to parameter a.
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where

β1(s, Q) = a exp(−Q)(10 arctan(5 − 1000s) + 15.7),

β2(y) = 1√
2π

exp

(
−0.5

(
100

(
y − 1

6
+ 0.005

))2
)

exp

(
3π

2

)
.

Here a is a positive constant. The dynamics of total population Q(t) for different values of a
are shown in Figure 4 (left). Only the maximum and minimum values of Q are plotted in the
bifurcation graph of the dynamics of Q(t) with respect to a in Figure 4 (right).

7. Conclusion

We have developed a first-order upwind scheme and a second-order finite difference scheme to
approximate the solution of a size-structured population model with distributed states-at-birth.
Convergence of both schemes to the unique bounded TV weak solution has been proved. Numeri-
cal results are provided to demonstrate the capability of the numerical methods in resolving smooth
as well as discontinuous solutions. For smooth solutions both schemes achieve the designed order
of accuracy. For discontinuous solutions, the second-order scheme demonstrates better accuracy in
capturing the discontinuity compared to upwind schemes. The second-order scheme is also applied
to the distributed states-at-birth model (DSSM) to show that supercritical Hopf-bifurcation may
occur in such models.

We also proved the convergence of the weak solution for the DSSM in the weak* topology
to that of the CSSM under certain conditions on the fertility function and used the second order
scheme to demonstrate this convergence.
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