21 research outputs found

    Experimental evidence for ecological selection on genome variation in the wild

    Get PDF
    Understanding natural selection's effect on genetic variation is a major goal in biology, but the genome-scale consequences of contemporary selection are not well known. In a release and recapture field experiment we transplanted stick insects to native and novel host plants and directly measured allele frequency changes within a generation at 186 576 genetic loci. We observed substantial, genome-wide allele frequency changes during the experiment, most of which could be attributed to random mortality (genetic drift). However, we also documented that selection affected multiple genetic loci distributed across the genome, particularly in transplants to the novel host. Host-associated selection affecting the genome acted on both a known colour-pattern trait as well as other (unmeasured) phenotypes. We also found evidence that selection associated with elevation affected genome variation, although our experiment was not designed to test this. Our results illustrate how genomic data can identify previously underappreciated ecological sources and phenotypic targets of selection

    Long-term balancing selection on chromosomal variants associated with crypsis in a stick insect

    Get PDF
    How polymorphisms are maintained within populations over long periods of time remains debated, because genetic drift and various forms of selection are expected to reduce variation. Here, we study the genetic architecture and maintenance of phenotypic morphs that confer crypsis in Timema cristinae stick insects, combining phenotypic information and genotyping-by-sequencing data from 1360 samples across 21 populations. We find two highly divergent chromosomal variants that span megabases of sequence and are associated with color polymorphism. We show that these variants exhibit strongly reduced effective recombination, are geographically widespread, and probably diverged millions of generations ago. We detect heterokaryotype excess and signs of balancing selection acting on these variants through the species' history. A third chromosomal variant in the same genomic region likely evolved more recently from one of the two color variants and is associated with dorsal pattern polymorphism. Our results suggest that large-scale genetic variation associated with crypsis has been maintained for long periods of time by potentially complex processes of balancing selection

    Natural selection and the predictability of evolution in Timemastick insects

    No full text
    Predicting evolution remains difficult. We studied the evolution of cryptic body coloration and pattern in a stick insect using 25 years of field data, experiments, and genomics. We found that evolution is more difficult to predict when it involves a balance between multiple selective factors and uncertainty in environmental conditions than when it involves feedback loops that cause consistent back-and-forth fluctuations. Specifically, changes in color-morph frequencies are modestly predictable through time (r2= 0.14) and driven by complex selective regimes and yearly fluctuations in climate. In contrast, temporal changes in pattern-morph frequencies are highly predictable due to negative frequency-dependent selection (r2= 0.86). For both traits, however, natural selection drives evolution around a dynamic equilibrium, providing some predictability to the process

    Stick insect genomes reveal natural selection's role in parallel speciation.

    No full text
    Natural selection can drive the repeated evolution of reproductive isolation, but the genomic basis of parallel speciation remains poorly understood. We analyzed whole-genome divergence between replicate pairs of stick insect populations that are adapted to different host plants and undergoing parallel speciation. We found thousands of modest-sized genomic regions of accentuated divergence between populations, most of which are unique to individual population pairs. We also detected parallel genomic divergence across population pairs involving an excess of coding genes with specific molecular functions. Regions of parallel genomic divergence in nature exhibited exceptional allele frequency changes between hosts in a field transplant experiment. The results advance understanding of biological diversification by providing convergent observational and experimental evidence for selection's role in driving repeatable genomic divergence
    corecore