6,298 research outputs found

    Currents and pseudomagnetic fields in strained graphene rings

    Get PDF
    We study the effects of strain on the electronic properties and persistent current characteristics of a graphene ring using the Dirac representation. For a slightly deformed graphene ring flake, one obtains sizable pseudomagnetic (gauge) fields that may effectively reduce or enhance locally the applied magnetic flux through the ring. Flux-induced persistent currents in a flat ring have full rotational symmetry throughout the structure; in contrast, we show that currents in the presence of a circularly symmetric deformation are strongly inhomogeneous, due to the underlying symmetries of graphene. This result illustrates the inherent competition between the `real' magnetic field and the `pseudo' field arising from strains, and suggest an alternative way to probe the strength and symmetries of pseudomagnetic fields on graphene systems

    Existence criteria for stabilization from the scaling behaviour of ionization probabilities

    Get PDF
    We provide a systematic derivation of the scaling behaviour of various quantities and establish in particular the scale invariance of the ionization probability. We discuss the gauge invariance of the scaling properties and the manner in which they can be exploited as consistency check in explicit analytical expressions, in perturbation theory, in the Kramers-Henneberger and Floquet approximation, in upper and lower bound estimates and fully numerical solutions of the time dependent Schroedinger equation. The scaling invariance leads to a differential equation which has to be satisfied by the ionization probability and which yields an alternative criterium for the existence of atomic bound state stabilization.Comment: 12 pages of Latex, one figur

    Vacuumless kinks systems from vacuum ones, an example

    Full text link
    Some years ago, Cho and Vilenkin, introduced a model which presents topological solutions, despite not having degenerate vacua as is usually expected. Here we present a new model with topological defects, connecting degenerate vacua but which in a certain limit recovers precisely the one proposed originally by Cho and Vilenkin. In other words, we found a kind of parent model for the so called vacuumless model. Then the idea is extended to a model recently introduced by Bazeia et al. Finally, we trace some comments the case of the Liouville model.Comment: 11 pages, 4 figure

    The quantum brachistochrone problem for non-Hermitian Hamiltonians

    Get PDF
    Recently Bender, Brody, Jones and Meister found that in the quantum brachistochrone problem the passage time needed for the evolution of certain initial states into specified final states can be made arbitrarily small, when the time-evolution operator is taken to be non-Hermitian but PT-symmetric. Here we demonstrate that such phenomena can also be obtained for non-Hermitian Hamiltonians for which PT-symmetry is completely broken, i.e. dissipative systems. We observe that the effect of a tunable passage time can be achieved by projecting between orthogonal eigenstates by means of a time-evolution operator associated with a non-Hermitian Hamiltonian. It is not essential that this Hamiltonian is PT-symmetric

    Non-Hermitian Hamiltonians with real eigenvalues coupled to electric fields: from the time-independent to the time dependent quantum mechanical formulation

    Get PDF
    We provide a reviewlike introduction into the quantum mechanical formalism related to non-Hermitian Hamiltonian systems with real eigenvalues. Starting with the time-independent framework we explain how to determine an appropriate domain of a non-Hermitian Hamiltonian and pay particular attention to the role played by PT-symmetry and pseudo-Hermiticity. We discuss the time-evolution of such systems having in particular the question in mind of how to couple consistently an electric field to pseudo-Hermitian Hamiltonians. We illustrate the general formalism with three explicit examples: i) the generalized Swanson Hamiltonians, which constitute non-Hermitian extensions of anharmonic oscillators, ii) the spiked harmonic oscillator, which exhibits explicit supersymmetry and iii) the -x^4-potential, which serves as a toy model for the quantum field theoretical phi^4-theory.Comment: 14 pages, 3 figures, to appear in Laser Physics, minor typos correcte

    Variation of the speed of light with temperature of the expanding universe

    Full text link
    From an extended relativistic dynamics for a particle moving in a cosmic background field with temperature T, we aim to obtain the speed of light with an explicit dependence on the background temperature of the universe. Although finding the speed of light in the early universe much larger than its current value, our approach does not violate the postulate of special relativity. Moreover, it is shown that the high value of the speed of light in the early universe was drastically decreased before the beginning of the inflationary period. So we are led to conclude that the theory of varying speed of light should be questioned as a possible solution of the horizon problem.Comment: 3 pages and 1 figure; Phys. Rev. D86, 027703 (2012

    Pork-cat syndrome: A case report

    Get PDF

    Interference effects in above-threshold ionization from diatomic molecules: determining the internuclear separation

    Full text link
    We calculate angle-resolved above-threshold ionization spectra for diatomic molecules in linearly polarized laser fields, employing the strong-field approximation. The interference structure resulting from the individual contributions of the different scattering scenarios is discussed in detail, with respect to the dependence on the internuclear distance and molecular orientation. We show that, in general, the contributions from the processes in which the electron is freed at one center and rescatters off the other obscure the interference maxima and minima obtained from single-center processes. However, around the boundary of the energy regions for which rescattering has a classical counterpart, such processes play a negligible role and very clear interference patterns are observed. In such energy regions, one is able to infer the internuclear distance from the energy difference between adjacent interference minima.Comment: 10 pages, 8 figures; discussions slightly modified and an additional figure inserted for clarit
    • …
    corecore