We study the effects of strain on the electronic properties and persistent
current characteristics of a graphene ring using the Dirac representation. For
a slightly deformed graphene ring flake, one obtains sizable pseudomagnetic
(gauge) fields that may effectively reduce or enhance locally the applied
magnetic flux through the ring. Flux-induced persistent currents in a flat ring
have full rotational symmetry throughout the structure; in contrast, we show
that currents in the presence of a circularly symmetric deformation are
strongly inhomogeneous, due to the underlying symmetries of graphene. This
result illustrates the inherent competition between the `real' magnetic field
and the `pseudo' field arising from strains, and suggest an alternative way to
probe the strength and symmetries of pseudomagnetic fields on graphene systems