383 research outputs found

    Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage

    Get PDF
    Hydrogen (H2) is a promising alternative energy carrier due to its environmental benefits, high energy density and its abundance. However, development of a practical storage system to enable the “Hydrogen Economy” remains a huge challenge. Metal-organic frameworks (MOFs) are an important class of crystalline coordination polymers constructed by bridging metal centers with organic linkers, and show promise for H2 storage due to their high surface area and tuneable properties. We summarize our research on novel porous materials with enhanced H2 storage properties, and describe frameworks derived from 3,5-substituted dicarboxylates (isophthalates) that serve as versatile molecular building blocks for the construction of a range of interesting coordination polymers with Cu(II) ions. A series of materials has been synthesised by connecting linear tetracarboxylate linkers to {Cu(II)2} paddlewheel moieties. These (4,4)-connected frameworks adopt the fof-topology in which the KagomĂ© lattice layers formed by {Cu(II)2} paddlewheels and isophthalates are pillared by the bridging ligands. These materials exhibit high structural stability and permanent porosity, and the pore size, geometry and functionality can be modulated by variation of the organic linker to control the overall H2 adsorption properties. NOTT-103 shows the highest H2 storage capacity of 77.8 mg g−1 at 77 K, 60 bar among the fof-type frameworks. H2 adsorption at low, medium and high pressures correlates with the isosteric heat of adsorption, surface area and pore volume, respectively. Tri-branched C3-symmetric hexacarboxylate ligands with Cu(II) give highly porous (3,24)-connected frameworks incorporating {Cu(II)2} paddlewheels. These ubt-type frameworks comprise three types of polyhedral cage: a cuboctahedron, truncated tetrahedron and a truncated octahedron which are fused in the solid state in the ratio 1:2:1, respectively. Increasing the length of the hexacarboxylate struts directly tunes the porosity of the resultant material from micro- to mesoporosity. These materials show exceptionally high H2 uptakes owing to their high surface area and pore volume. NOTT-112, the first reported member of this family reported, adsorbs 111 mg g−1 of H2 at 77 K , 77 bar. More recently, enhanced H2 adsorption in these ubt-type frameworks has been achieved using combinations of polyphenyl groups linked by alkynes to give an overall gravimetric gas capacity for NU-100 of 164 mg g−1 at 77 K, 70 bar. However, due to its very low density NU-100 shows a lower volumetric capacity of 45.7 g L-1 compared with 55.9 g L-1 for NOTT-112, which adsorbs 2.3 wt% H2 at 1 bar, 77K. This significant adsorption of H2 at low pressures is attributed to the arrangement of the {Cu24(isophthalate)24} cuboctahedral cages within the polyhedral structure. Free metal coordination positions are the first binding sites for D2, and in these ubt-type frameworks there are two types of Cu(II) centres, one with its vacant site pointing into the cuboctahedral cage and another pointing externally. D2 molecules bind first at the former position, and then at the external open metal sites. However, other adsorption sites between the cusp of three phenyl groups and a Type I pore window in the framework are also occupied. Ligand and complex design feature strongly in enhancing and maximising H2 storage, and, although current materials operate at 77 K, research continues to explore routes to high capacity H2 storage materials that can function at higher temperatures

    Methane adsorption in metal-organic frameworks containing nanographene linkers: a computational study

    Get PDF
    Metal-organic framework (MOF) materials are known to be amenable to expansion through elongation of the parent organic linker. For a family of model (3,24)-connected MOFs with the rht topology, in which the central part of organic linker comprises a hexabenzocoronene unit, the effect of the linker type and length on their structural and gas adsorption properties is studied computationally. The obtained results compare favourably with known MOF materials of similar structure and topology. We find that the presence of a flat nanographene-like central core increases the geometric surface area of the frameworks, sustains additional benzene rings, promotes linker elongation and the efficient occupation of the void space by guest molecules. This provides a viable linker modification method with potential for enhancement of uptake for methane and other gas molecules

    Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates

    Get PDF
    Whether the presence of adsorbates increases or decreases thermal conductivity in metal-organic frameworks (MOFs) has been an open question. Here we report observations of thermal transport in the metal-organic framework HKUST-1 in the presence of various liquid adsorbates: water, methanol, and ethanol. Experimental thermoreflectance measurements were performed on single crystals and thin films, and theoretical predictions were made using molecular dynamics simulations. We find that the thermal conductivity of HKUST-1 decreases by 40 – 80% depending on the adsorbate, a result that cannot be explained by effective medium approximations. Our findings demonstrate that adsorbates introduce additional phonon scattering in HKUST-1, which particularly shortens the lifetimes of low-frequency phonon modes. As a result, the system thermal conductivity is lowered to a greater extent than the increase expected by the creation of additional heat transfer channels. Finally, we show that thermal diffusivity is even more greatly reduced than thermal conductivity by adsorption

    Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) Crystals

    Get PDF
    Metal Organic Frameworks (MOFs) represent a class of nanoporous crystalline materials with far reaching potential in gas storage, catalysis, and medical devices. We investigated the effects of synthesis process parameters on production of MOF-5 from terephthalic acid and zinc nitrate in diethylformamide. Under favorable synthesis conditions, we systematically mapped a solid formation diagram in terms of time and temperature for both stirred and unstirred conditions. The synthesis of MOF-5 has been previously reported as a straightforward reaction progressing from precursor compounds in solution directly to the final MOF-5 solid phase product. However, we show that the solid phase formation process is far more complex, invariably transferring through metastable intermediate crystalline phases before the final MOF-5 phase is reached, providing new insights into the formation pathways of MOFs. We also identify process parameters suitable for scale-up and continuous manufacturing of high purity MOF-5

    Molecular decoding using luminescence from an entangled porous framework

    Get PDF
    Chemosensors detect a single target molecule from among several molecules, but cannot differentiate targets from one another. In this study, we report a molecular decoding strategy in which a single host domain accommodates a class of molecules and distinguishes between them with a corresponding readout. We synthesized the decoding host by embedding naphthalenediimide into the scaffold of an entangled porous framework that exhibited structural dynamics due to the dislocation of two chemically non-interconnected frameworks. An intense turn-on emission was observed on incorporation of a class of aromatic compounds, and the resulting luminescent colour was dependent on the chemical substituent of the aromatic guest. This unprecedented chemoresponsive, multicolour luminescence originates from an enhanced naphthalenediimide–aromatic guest interaction because of the induced-fit structural transformation of the entangled framework. We demonstrate that the cooperative structural transition in mesoscopic crystal domains results in a nonlinear sensor response to the guest concentration
    • 

    corecore