37 research outputs found

    Grassland heterogeneity under grazing and protection management regimes in the mixed prairie ecosystem

    Get PDF
    Non-Peer ReviewedGrassland heterogeneity, in terms of spatial pattern, vertical structure, and species composition, is an important indicator of wildlife habitat. Aimed to restore ecological integrity of native prairie, the Grasslands National Park newly approved management plan consists of reintroducing large animals at moderate and intensive grazing densities into the park. Park managers are eager to have a fast and cost effective way to monitor the effects of the new management practices after the park has been under complete protection for over 15 years. This study was proposed to investigate the potential use of remotely sensed data for this purpose. As an ongoing project, a solid conclusion couldn’t be made at this moment. With preliminary results, a new framework was discussed for further analysis

    Intact Pathway Successfully Buffers Sage Grouse Migration

    Get PDF
    Landscape conservation is the mechanism for conserving migratory wildlife in sagebrush ecosystems. We studied a greater sage grouse (Centrocercus urophasianus; hereafter ‘sage-grouse’) population with the longest-known annual migration, ? 240 km round-trip, between summer and winter ranges in Saskatchewan, Canada, and northcentral Montana. We asked: Do birds fly quickly through a corridor, or do they use stopovers within a larger pathway? GPS-tracking revealed that migrating grouse frequent stopovers along multiple routes that coalesce to form an integrated pathway. Month-long fall migration in November contrasted with punctuated spring migration lasting ~2 weeks in late March/early April. Individual birds typically spent ~1 day at 9 different stopovers, migrating 71-91 km in 11-15 days. Migrating grouse used native sagebrush rangeland in proportion to its availability and avoided cropland and badlands. Birds responded to record-breaking snowfall in winter 2011 (>274 cm) by migrating another ? 50 km south onto windswept ridge tops where sagebrush remained above snow. Grouse selected habitat on Charles M. Russell National Wildlife Refuge most similar to typical winter habitat. Doing so was without consequence to winter survival; such was not the case for a nearby resident population. Newly identified winter range suggests that high site fidelity is tempered by an ability to adapt quickly when resources become scarce. We recommend public land policy that provides grazing opportunities while precluding large-scale energy development or whole scale removal of sagebrush. Management actions that maintain sagebrush as an emergency food source in newly identified sage grouse wintering grounds will help conserve this migratory population

    The conservation value of human-modified landscapes for the world's primates

    Get PDF
    Land-use change pushes biodiversity into human-modified landscapes, where native ecosystems are surrounded by anthropic land covers (ALCs). Yet, the ability of species to use these emerging covers remains poorly understood. We quantified the use of ALCs by primates worldwide, and analyzed species' attributes that predict such use. Most species use secondary forests and tree plantations, while only few use human settlements. ALCs are used for foraging by at least 86 species with an important conservation outcome: those that tolerate heavily modified ALCs are 26% more likely to have stable or increasing populations than the global average for all primates. There is no phylogenetic signal in ALCs use. Compared to all primates on Earth, species using ALCs are less often threatened with extinction, but more often diurnal, medium or large-bodied, not strictly arboreal, and habitat generalists. These findings provide valuable quantitative information for improving management practices for primate conservation worldwide

    Analysis of a seeder-feeder and freezing drizzle event

    Get PDF
    Surface icing can cause dramatic consequences on human activities. What is more, numerical weather prediction models are not very accurate in determining freezing drizzle, which creates uncertainty when forecasting this type of weather phenomenon. Therefore, it is essential to improve the forecast accuracy of these models for such phenomena to mitigate risks caused by unforeseen freezing drizzle events. On 5 February 2012, an episode of freezing drizzle took place in the Guadarrama Mountains, at the center of the Iberian Peninsula. This episode was preceded by weak snowfall. After the freezing drizzle, moderate snowfall was recorded in the study area. This event was simulated using the Weather Research and Forecasting model. Through this analysis, we identified the meteorological factors at both synoptic scale and mesoscale that caused this episode. Wind perpendicular to an orographic barrier-generated updrafts and retention of moisture upwind, which caused orographic clouds to appear on the north side of the Guadarrama Mountains. Atmospheric stability prevented cloud formation at midlevels at the time of the freezing drizzle, which maintained cloud top temperatures warmer than −15ºC during the episode. The entrance of moisture and instability at midlevels caused cloud top temperatures substantially colder than −15º C, which coincided with snow in the mountain range. Cloud top temperature and thickness control the efficiency of the glaciation process, thereby determining the type of precipitation at the surface. Freezing drizzle risk and in-cloud icing algorithms were developed with the aim of predicting similar events in the study area, which could mitigate impacts on human activities.This paper was supported by the following grants: TEcoAgua, METEORISK PROJECT (RTC-2014-1872-5), Granimetro (CGL2010-15930) and CGL2011-25327 of MINECO, and LE220A11-2 and LE003B009 awarded by the Junta de Castilla y León

    Traditional Mapuche ecological knowledge in Patagonia, Argentina: fishes and other living beings inhabiting continental waters, as a reflection of processes of change

    Full text link

    Compensatory growth of wapiti (Cervus elaphus) on aspen parkland ranges

    No full text

    Near-surface atmospheric humidity data from a mesoscale meteorological network in the foothills of the Canadian Rocky Mountains, 2005-2010

    No full text
    Hourly near-surface relative humidity and temperature were monitored from 2005 to 2010 in a mesoscale network of 232 sites in the foothills of the Rocky Mountains in southwestern Alberta, Canada. The monitoring network covers a range of elevations from 890 to 2880 m above sea level and an area of about 18 000 km², sampling a variety of topographic settings and surface environments with an average spatial density of one station per 78 km². Having been combined with air pressure measurements from Calgary International Airport and adjusted for the site elevation, the hourly data form the basis of estimates of daily mean specific humidity, vapour pressure, and relative humidity at each site. Overall data coverage for the study period is 89 %. This paper describes the processing methods used to quality control and gap fill the data. Inverse-distance weighting techniques are used to estimate the missing 11 % of data, based on neighbourhood values of daily mean specific humidity. We also report monthly mean lapse rates of specific and relative humidity. Plots of seasonal and spatial humidity patterns in the region illustrate the relations between humidity variables and temperature, elevation, and longitude

    Daily temperature data from the Foothills Climate Array Mesonet, Canadian Rocky Mountains, 2005-2010

    No full text
    Near-surface air temperatures were monitored from 2005 to 2010 in a mesoscale network of 230 sites in the foothills of the Rocky Mountains in southwestern Alberta, Canada. The monitoring network covers a range of elevations from 890 to 2880 m above sea level and an area of about 18 000 km², sampling a variety of topographic settings and surface environments with an average spatial density of one station per 78 km². This paper presents the multiyear temperature dataset from this study, with minimum, maximum, and mean daily temperature data. In this paper, we describe the quality control and processing methods used to clean and filter the data and assess its accuracy. Overall data coverage for the study period is 91 %. We introduce a weather-system-dependent gap-filling technique to estimate the missing 9 % of data. Monthly and seasonal distributions of minimum, maximum, and mean daily temperature lapse rates are shown for the region
    corecore