125 research outputs found

    Developments in the negative-U modelling of the cuprate HTSC systems

    Full text link
    The paper deals with the many stands that go into creating the unique and complex nature of the HTSC cuprates above Tc as below. Like its predecessors it treats charge, not spin or lattice, as prime mover, but thus taken in the context of the chemical bonding relevant to these copper oxides. The crucial shell filling, negative-U, double-loading fluctuations possible there require accessing at high valent local environment as prevails within the mixed valent, inhomogeneous two sub-system circumstance of the HTSC materials. Close attention is paid to the recent results from Corson, Demsar, Li, Johnson, Norman, Varma, Gyorffy and colleagues.Comment: 44 pages:200+ references. Submitted to J.Phys.:Condensed Matter, Sept 7 200

    Examining the utility of extended laboratory panel testing in the emergency department for risk stratification of patients with COVID-19: a single-centre retrospective service evaluation.

    Get PDF
    BACKGROUND: The role of specific blood tests to predict poor prognosis in patients admitted with infection from SARS-CoV-2 remains uncertain. During the first wave of the global pandemic, an extended laboratory testing panel was integrated into the local pathway to guide triage and healthcare resource utilisation for emergency admissions. We conducted a retrospective service evaluation to determine the utility of extended tests (D-dimer, ferritin, high-sensitivity troponin I, lactate dehydrogenase and procalcitonin) compared with the core panel (full blood count, urea and electrolytes, liver function tests and C reactive protein). METHODS: Clinical outcomes for adult patients with laboratory-confirmed COVID-19 admitted between 17 March and 30 June 2020 were extracted, alongside costs estimates for individual tests. Prognostic performance was assessed using multivariable logistic regression analysis with 28-day mortality used as the primary endpoint and a composite of 28-day intensive care escalation or mortality for secondary analysis. RESULTS: From 13 500 emergency attendances, we identified 391 unique adults admitted with COVID-19. Of these, 113 died (29%) and 151 (39%) reached the composite endpoint. 'Core' test variables adjusted for age, gender and index of deprivation had a prognostic area under the curve of 0.79 (95% CI 0.67 to 0.91) for mortality and 0.70 (95% CI 0.56 to 0.84) for the composite endpoint. Addition of 'extended' test components did not improve on this. CONCLUSION: Our findings suggest use of the extended laboratory testing panel to risk stratify community-acquired COVID-19 positive patients on admission adds limited prognostic value. We suggest laboratory requesting should be targeted to patients with specific clinical indications

    Constant slip‐rate on the Doruneh strike‐slip fault, Iran, averaged over Late Pleistocene, Holocene, and decadal timescales

    Get PDF
    Varying estimates of both present‐day strain accumulation and long‐term slip‐rate on the Doruneh left‐lateral strike‐slip fault, NE Iran, have led to suggestions that it exhibits large along‐strike and/or temporal changes in activity. In this paper, we make and compare estimates of slip‐rate measured using both geodesy and geomorphology, and spanning time periods ranging from decadal to 100 ka. To image the present‐day accumulation of strain we process seven years (2003‐2010) of data from six ENVISAT tracks covering the fault, with interferograms produced for 400 km‐long strips of data in order to image the long‐wavelength signals associated with interseismic strain accumulation across the locked fault. Our analysis shows that less than 4 mm/yr – and likely only 1‐3 mm/yr ‐ of slip accumulates across the fault. Using high‐resolution optical satellite imagery we make reconstructions of displacement across six alluvial fans whose surfaces cross the fault, in four separate river catchments. We determine the ages of these fans using infra‐red‐stimulated luminescence dating combined with U‐series dating of pedogenic carbonates. The six fans vary in age from ∼10‐100 kyr, and a regression line fitted to four of these yields a slip rate of 2.5 ± 0.3 mm/yr. We conclude that within the uncertainty of our measurements the slip‐rate has remained constant over the last ∼100 ka and is representative of the strain accumulation at the present‐day. The slip‐rate that we measure is consistent with the E‐W left‐lateral Doruneh fault accommodating N‐S right‐lateral faulting by 'bookshelf' faulting, with clockwise rotation about a vertical axis

    Retinoic Acids Potentiate BMP9-Induced Osteogenic Differentiation of Mesenchymal Progenitor Cells

    Get PDF
    As one of the least studied bone morphogenetic proteins (BMPs), BMP9 is one of the most osteogenic BMPs. Retinoic acid (RA) signaling is known to play an important role in development, differentiation and bone metabolism. In this study, we investigate the effect of RA signaling on BMP9-induced osteogenic differentiation of mesenchymal progenitor cells (MPCs).Both primary MPCs and MPC line are used for BMP9 and RA stimulation. Recombinant adenoviruses are used to deliver BMP9, RARalpha and RXRalpha into MPCs. The in vitro osteogenic differentiation is monitored by determining the early and late osteogenic markers and matrix mineralization. Mouse perinatal limb explants and in vivo MPC implantation experiments are carried out to assess bone formation. We find that both 9CRA and ATRA effectively induce early osteogenic marker, such as alkaline phosphatase (ALP), and late osteogenic markers, such as osteopontin (OPN) and osteocalcin (OC). BMP9-induced osteogenic differentiation and mineralization is synergistically enhanced by 9CRA and ATRA in vitro. 9CRA and ATRA are shown to induce BMP9 expression and activate BMPR Smad-mediated transcription activity. Using mouse perinatal limb explants, we find that BMP9 and RAs act together to promote the expansion of hypertrophic chondrocyte zone at growth plate. Progenitor cell implantation studies reveal that co-expression of BMP9 and RXRalpha or RARalpha significantly increases trabecular bone and osteoid matrix formation.Our results strongly suggest that retinoid signaling may synergize with BMP9 activity in promoting osteogenic differentiation of MPCs. This knowledge should expand our understanding about how BMP9 cross-talks with other signaling pathways. Furthermore, a combination of BMP9 and retinoic acid (or its agonists) may be explored as effective bone regeneration therapeutics to treat large segmental bony defects, non-union fracture, and/or osteoporotic fracture

    Lysophosphatidic Acid Acyltransferase β (LPAATβ) Promotes the Tumor Growth of Human Osteosarcoma

    Get PDF
    Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2) in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated.Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma.Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This is especially attractive given the availability of selective pharmacological inhibitors

    Structural matters in HTSC; the origin and form of stripe organization and checker boarding

    Full text link
    The paper deals with the controversial charge and spin self-organization phenomena in the HTSC cuprates, of which neutron, X-ray, STM and ARPES experiments give complementary, sometimes apparently contradictory glimpses. The examination has been set in the context of the boson-fermion, negative-U understanding of HTSC advocated over many years by the author. Stripe models are developed which are 2q in nature and diagonal in form. For such a geometry to be compatible with the data rests upon both the spin and charge arrays being face-centred. Various special doping concentrations are closely looked at, in particular p = 0.1836 or 9/49, which is associated with the maximization of the superconducting condensation energy and the termination of the pseudogap regime. The stripe models are dictated by real space organization of the holes, whereas the dispersionless checkerboarding is interpreted in terms of correlation driven collapse of normal Fermi surface behaviour and response functions. The incommensurate spin diffraction below the resonance energy is seen as in no way expressing spin-wave physics or Fermi surface nesting, but is driven by charge and strain (Jahn-Teller) considerations, and it stands virtually without dispersion. The apparent dispersion comes from the downward dispersion of the resonance peak, and the growth of a further incoherent commensurate peak ensuing from the falling level of charge stripe organization under excitation.Comment: 49 pages with 8 figure

    Six RNA Viruses and Forty-One Hosts: Viral Small RNAs and Modulation of Small RNA Repertoires in Vertebrate and Invertebrate Systems

    Get PDF
    We have used multiplexed high-throughput sequencing to characterize changes in small RNA populations that occur during viral infection in animal cells. Small RNA-based mechanisms such as RNA interference (RNAi) have been shown in plant and invertebrate systems to play a key role in host responses to viral infection. Although homologs of the key RNAi effector pathways are present in mammalian cells, and can launch an RNAi-mediated degradation of experimentally targeted mRNAs, any role for such responses in mammalian host-virus interactions remains to be characterized. Six different viruses were examined in 41 experimentally susceptible and resistant host systems. We identified virus-derived small RNAs (vsRNAs) from all six viruses, with total abundance varying from “vanishingly rare” (less than 0.1% of cellular small RNA) to highly abundant (comparable to abundant micro-RNAs “miRNAs”). In addition to the appearance of vsRNAs during infection, we saw a number of specific changes in host miRNA profiles. For several infection models investigated in more detail, the RNAi and Interferon pathways modulated the abundance of vsRNAs. We also found evidence for populations of vsRNAs that exist as duplexed siRNAs with zero to three nucleotide 3′ overhangs. Using populations of cells carrying a Hepatitis C replicon, we observed strand-selective loading of siRNAs onto Argonaute complexes. These experiments define vsRNAs as one possible component of the interplay between animal viruses and their hosts

    Body appreciation around the world: Measurement invariance of the Body Appreciation Scale-2 (BAS-2) across 65 nations, 40 languages, gender identities, and age.

    Get PDF
    The Body Appreciation Scale-2 (BAS-2) is a widely used measure of a core facet of the positive body image construct. However, extant research concerning measurement invariance of the BAS-2 across a large number of nations remains limited. Here, we utilised the Body Image in Nature (BINS) dataset - with data collected between 2020 and 2022 - to assess measurement invariance of the BAS-2 across 65 nations, 40 languages, gender identities, and age groups. Multi-group confirmatory factor analysis indicated that full scalar invariance was upheld across all nations, languages, gender identities, and age groups, suggesting that the unidimensional BAS-2 model has widespread applicability. There were large differences across nations and languages in latent body appreciation, while differences across gender identities and age groups were negligible-to-small. Additionally, greater body appreciation was significantly associated with higher life satisfaction, being single (versus being married or in a committed relationship), and greater rurality (versus urbanicity). Across a subset of nations where nation-level data were available, greater body appreciation was also significantly associated with greater cultural distance from the United States and greater relative income inequality. These findings suggest that the BAS-2 likely captures a near-universal conceptualisation of the body appreciation construct, which should facilitate further cross-cultural research. [Abstract copyright: Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.
    corecore