101 research outputs found

    The relativistic Iron K-alpha line from an accretion disc onto a static non-baryonic compact object

    Full text link
    This paper continues the study of the properties of an accretion disc rotating around a non-baryonic (assumed super-massive) compact object. This kind of objects, generically known as boson stars, were earlier proposed as a possible alternative scenario to the existence of super-masive black holes in the center of every galaxy. A dilute boson star has also been proposed as a large part of the non-baryonic dark matter, flattening galactic rotational velocities curves. In this contribution, we compute the profile of the emission lines of Iron; its shape has been for long known as a useful diagnosis of the space-time geometry. We compare with the case of a Schwarzschild black hole, concluding that the differences are observationally distinguishable.Comment: 14 pages, 7 figure

    Central circulatory hemodynamics as a function of gravitational stress

    Get PDF
    This study focuses on an evaluation of the central hemodynamics in a nonhuman primate model to variations in gravitational states. The baboon, phylogenectically close to man, was chosen as the human surrogate. The study environments selected are head-down and head-up tilt in the physiology laboratory, centrifugation to test hypergravic stress, and parabolic flights to test transient acute responses to microgravity

    Thermocapillary actuation of liquid flow on chemically patterned surfaces

    Get PDF
    We have investigated the thermocapillary flow of a Newtonian liquid on hydrophilic microstripes which are lithographically defined on a hydrophobic surface. The speed of the microstreams is studied as a function of the stripe width w, the applied thermal gradient |dT/dx| and the liquid volume V deposited on a connecting reservoir pad. Numerical solutions of the flow speed as a function of downstream position show excellent agreement with experiment. The only adjustable parameter is the inlet film height, which is controlled by the ratio of the reservoir pressure to the shear stress applied to the liquid stream. In the limiting cases where this ratio is either much smaller or much larger than unity, the rivulet speed shows a power law dependency on w, |dT/dx| and V. In this study we demonstrate that thermocapillary driven flow on chemically patterned surfaces can provide an elegant and tunable method for the transport of ultrasmall liquid volumes in emerging microfluidic technologies

    Broad iron lines in Active Galactic Nuclei

    Get PDF
    An intrinsically narrow line emitted by an accretion disk around a black hole appears broadened and skewed as a result of the Doppler effect and gravitational redshift. The fluorescent iron line in the X-ray band at 6.4-6.9keV is the strongest such line and is seen in the X-ray spectrum of many active galactic nuclei and, in particular, Seyfert galaxies. It is an important diagnostic with which to study the geometry and other properties of the accretion flow very close to the central black hole. The broad iron line indicates the presence of a standard thin accretion disk in those objects, often seen at low inclination. The broad iron line has opened up strong gravitational effects around black holes to observational study with wide-reaching consequences for both astrophysics and physics.Comment: 26 pages. Invited review, accepted for publication in PAS

    On the Origin of Broad Fe K alpha and Hi H alpha Lines in AGN

    Full text link
    We examine the properties of the Fe emission lines that arise near 6.4 keV in the ASCA spectra of AGN. Our emphasis is on the Seyfert 1 galaxies where broad and apparently complex Fe K alpha emission is observed. We consider various origins for the line but focus on the pros and cons for line emitting accretion disk models. We develop a simple model of an illuminated disk capable of producing both X-ray and optical lines from a disk. The model is able to reproduce the observed Fe K alpha FWHM ratio as well as the radii of maximum emissivity implied by the profile redshifts. The overall profile shapes however do not fit well the predictions of our disk illumination model nor do we derive always consistent disk inclinations for the two lines. We conclude that the evidence for and against an accretion disk origin for the Fe K alpha emission is equal at best. The bulk of the data requires a very disparate set of line fits which shed little light on a coherent physical model. We briefly consider alternatives to disk emission models and show that a simple bicone model can reproduce the FE line profiles equally well.Comment: 29 pages, 6 tables, 6 figures. Submitted for publication in the Astrophysical Journal part

    GYOTO: a new general relativistic ray-tracing code

    Full text link
    GYOTO, a general relativistic ray-tracing code, is presented. It aims at computing images of astronomical bodies in the vicinity of compact objects, as well as trajectories of massive bodies in relativistic environments. This code is capable of integrating the null and timelike geodesic equations not only in the Kerr metric, but also in any metric computed numerically within the 3+1 formalism of general relativity. Simulated images and spectra have been computed for a variety of astronomical targets, such as a moving star or a toroidal accretion structure. The underlying code is open source and freely available. It is user-friendly, quickly handled and very modular so that extensions are easy to integrate. Custom analytical metrics and astronomical targets can be implemented in C++ plug-in extensions independent from the main code.Comment: 20 pages, 11 figure

    Gravitating discs around black holes

    Full text link
    Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole--disc system by analytical solutions of stationary, axially symmetric Einstein's equations. Then, more detailed considerations are focused to middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring, however, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging and completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the environment around. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star--disc interactions, which can be recognised in observational properties, such as the relation between the central mass and stellar velocity dispersion.Comment: Accepted for publication in CQG; high-resolution figures will be available from http://www.iop.org/EJ/journal/CQ

    Gravitational Lensing by Black Holes

    Full text link
    We review the theoretical aspects of gravitational lensing by black holes, and discuss the perspectives for realistic observations. We will first treat lensing by spherically symmetric black holes, in which the formation of infinite sequences of higher order images emerges in the clearest way. We will then consider the effects of the spin of the black hole, with the formation of giant higher order caustics and multiple images. Finally, we will consider the perspectives for observations of black hole lensing, from the detection of secondary images of stellar sources and spots on the accretion disk to the interpretation of iron K-lines and direct imaging of the shadow of the black hole.Comment: Invited article for the GRG special issue on lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). 31 pages, 12 figure

    High-Dose Testosterone Propionate Treatment Reverses the Effects of Endurance Training on Myocardial Antioxidant Defenses in Adolescent Male Rats

    Get PDF
    This study was aimed at evaluation of changes in activities of selected antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) and contents of key nonenzymatic antioxidants (glutathione, protein thiol groups, and ι- and γ-tocopherols) in the left heart ventricle of young male Wistar rats subjected to endurance training (treadmill running, 1 h daily, 5 days a week, for 6 weeks) or/and testosterone propionate treatment (8 or 80 mg/kg body weight, intramuscularly, once a week, for 6 weeks) during adolescence. The training alone increased the activities of key antioxidant enzymes, but lowered the pool of nonenzymatic antioxidants and enhanced myocardial oxidative stress as evidenced by elevation of the lipid peroxidation biomarker malondialdehyde. The lower-dose testosterone treatment showed mixed effects on the individual components of the antioxidant defense system, but markedly enhanced lipid peroxidation. The higher-dose testosterone treatment decreased the activities of the antioxidant enzymes, lowered the contents of the nonenzymatic antioxidants, except for that of γ-tocopherol, reversed the effect of endurance training on the antioxidant enzymes activities, and enhanced lipid peroxidation more than the lower-dose treatment. These data demonstrate the potential risk to cardiac health from exogenous androgen use, either alone or in combination with endurance training, in adolescents

    Androgens Contribute to Sex Differences in Myocardial Remodeling under Pressure Overload by a Mechanism Involving TGF-β

    Get PDF
    Background: In clinical studies, myocardial remodeling in aortic valve stenosis appears to be more favorable in women than in men, even after menopause. In the present study, we assessed whether circulating androgens contribute to a less favorable myocardial remodeling under pressure overload in males. We examined sex-related differences in one-year-old male and female mice. Whereas male mice at this age exhibited circulating androgen levels within the normal range for young adults, the circulating estrogens in females were reduced. The contribution of gonadal androgens to cardiac remodeling was analyzed in a group of same-age castrated mice. Methodology/Principal Findings: Animals were subjected to transverse aortic constriction (TAC). Echocardiography was performed 2 weeks after TAC and myocardial mRNA levels of TGF-bs, Smads 2 and 3, collagens, fibronectin, b-myosin heavy chain and a-myosin heavy chain were determined by q-PCR. Protein detection of p-SMAD2/3 was performed by Western Blot. Histological staining of fibrosis was performed with picrosirius red and Masson’s trichrome. Compared with females, males developed more severe tissue fibrosis, LV dilation and hemodynamic dysfunction. TAC-males showed higher myocardial expression levels of TGF-bs and the treatment with a neutralizing antibody to TGF-b prevented myocardial fibrosis development. Orchiectomy diminished TAC-induced up-regulation of TGF-bs and TGF-b target genes, and it also reduced fibrosis and hemodynamic dysfunction. The capability of androgens to induce TGF-b expression was confirmed i
    • …
    corecore