531 research outputs found

    Developing Organ Offer and Acceptance Measures: When ‘Good’ Organs Are Turned Down

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75521/1/j.1600-6143.2007.01784.x.pd

    Modeling Water Resource Systems under Climate Change: IGSM-WRS

    Get PDF
    Through the integration of a Water Resource System (WRS) component, the MIT Integrated Global System Model (IGSM) framework has been enhanced to study the effects of climate change on managed water-resource systems. Development of the WRS involves the downscaling of temperature and precipitation from the zonal representation of the IGSM to regional (latitude-longitude) scale, and the translation of the resulting surface hydrology to runoff at the scale of river basins, referred to as Assessment Sub-Regions (ASRs). The model of water supply is combined with analysis of water use in agricultural and non-agricultural sectors and with a model of water system management that allocates water among uses and over time and routes water among ASRs. Results of the IGSM-WRS framework include measures of water adequacy and ways it is influenced by climate change. Here we document the design of WRS and its linkage to other components of the IGSM, and present tests of consistency of model simulations with the historical record.The Joint Program on the Science and Policy of Global Change is funded by the U.S. Department of Energy, Office of Science under grants DE-FG02-94ER61937, DE-FG02-93ER61677, DEFG02- 08ER64597, and DE-FG02-06ER64320; the U.S. Environmental Protection Agency under grants XA-83344601-0, XA-83240101, XA-83042801-0, PI-83412601-0, RD-83096001, and RD- 83427901-0; the U.S. National Science Foundation under grants SES-0825915, EFRI-0835414, ATM-0120468, BCS-0410344, ATM-0329759, and DMS-0426845; the U.S. National Aeronautics and Space Administration under grants NNX07AI49G, NNX08AY59A, NNX06AC30A, NNX09AK26G, NNX08AL73G, NNX09AI26G, NNG04GJ80G, NNG04GP30G, and NNA06CN09A; the U.S. National Oceanic and Atmospheric Administration under grants DG1330-05-CN-1308, NA070AR4310050, and NA16GP2290; the U.S. Federal Aviation Administration under grant 06-C-NE-MIT; the Electric Power Research Institute under grant EPP32616/ C15124; and a consortium of 40 industrial and foundation sponsors (for the complete list see http://globalchange.mit.edu/sponsors/current.html)

    Water Body Temperature Model for Assessing Climate Change Impacts on Thermal Cooling

    Get PDF
    We develop and test a physically based semi-Lagrangian water body temperature model to apply climatological data and thermal pollution from river-based power plants to historical river flow data in order to better understand climate change impacts on surface water temperature and thermal power plant withdrawal allowances. The model is built for rapid assessment and use in Integrated Assessment Models. We first test the standalone model on a 190km river reach, the Delaware River, where we have detailed flow and temperature data. An R2 of 0.88 is obtained on hourly data for this initial test. Next, we integrate the standalone temperature model into a series of models—rainfall-runoff model, water demand model, water resource management model, and power plant uptake and release model—for the contiguous USA (CONUS), with about 19,000 segments total. With this system in place, we then validate the standalone water temperature model within the system for 16 river stations throughout the CONUS, where we have measured daily temperature data. The model performs reasonably well with a median R2 of 0.88. A variety of climate and emissions scenarios are then applied to the model to test regions of higher vulnerability to river temperature environmental violations, making use of output from two GCMs and six emissions scenarios focusing on projections out to 2050. We find that the two GCMs project significantly different impacts to water temperature, driven largely by the resulting changes in streamflow from the two models. We also find significantly different impacts on the withdrawal allowed by thermal power plants due to environmental regulations. Potential impacts on generation are between +3% and -4% by 2050 for the unconstrained emissions case and +3.5% to -2% for the stringent GHG mitigation policy (where 1% is equivalent to 32 TWh, or about 3 billion USD/year using 2005 electricity prices). We also find that once-through cooling plants are most vulnerable to climate change impacts, with summer impacts ranging from -0.8% to -6% for the unconstrained emissions case and +2.1% to -3.7% for the stringent GHG emissions case

    CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors

    Full text link
    This paper reviews the development of CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors. MAPS are developed in a standard CMOS technology. In the imaging field, where the technology found its first applications, they are also known as CMOS Image Sensors. The use of MAPS as a detector for particle physics was first proposed at the end of 1999. Since then, their good performance in terms of spatial resolution, efficiency, radiation hardness have been demonstrated and work is now well under way to deliver the first MAPS-based vertex detectors.Comment: Invited talk at International Symposium on the Development of Detectors for Particle, AstroParticle and Synchrtron Radiation Experiments, Stanford Ca (SNIC06) 4 pages, pdf, 2 TIFF figures, PSN000

    An HMM-Based Framework for Supporting Accurate Classification of Music Datasets

    Get PDF
    open3In this paper, we use Hidden Markov Models (HMM) and Mel-Frequency Cepstral Coecients (MFCC) to build statistical models of classical music composers directly from the music datasets. Several musical pieces are divided by instruments (String, Piano, Chorus, Orchestra), and, for each instrument, statistical models of the composers are computed.We selected 19 dierent composers spanning four centuries by using a total number of 400 musical pieces. Each musical piece is classied as belonging to a composer if the corresponding HMM gives the highest likelihood for that piece. We show that the so-developed models can be used to obtain useful information on the correlation between the composers. Moreover, by using the maximum likelihood approach, we also classied the instrumentation used by the same composer. Besides as an analysis tool, the described approach has been used as a classier. This overall originates an HMM-based framework for supporting accurate classication of music datasets. On a dataset of String Quartet movements, we obtained an average composer classication accuracy of more than 96%. As regards instrumentation classication, we obtained an average classication of slightly less than 100% for Piano, Orchestra and String Quartet. In this paper, the most signicant results coming from our experimental assessment and analysis are reported and discussed in detail.openCuzzocrea, Alfredo; Mumolo, Enzo; Vercelli, GianniCuzzocrea, Alfredo; Mumolo, Enzo; Vercelli, Giann

    Effect of formant frequency spacing on perceived gender in pre-pubertal children's voices

    Get PDF
    <div><p>Background</p><p>It is usually possible to identify the sex of a pre-pubertal child from their voice, despite the absence of sex differences in fundamental frequency at these ages. While it has been suggested that the overall spacing between formants (formant frequency spacing - ΔF) is a key component of the expression and perception of sex in children's voices, the effect of its continuous variation on sex and gender attribution has not yet been investigated.</p><p>Methodology/Principal findings</p><p>In the present study we manipulated voice ΔF of eight year olds (two boys and two girls) along continua covering the observed variation of this parameter in pre-pubertal voices, and assessed the effect of this variation on adult ratings of speakers' sex and gender in two separate experiments. In the first experiment (sex identification) adults were asked to categorise the voice as either male or female. The resulting identification function exhibited a gradual slope from male to female voice categories. In the second experiment (gender rating), adults rated the voices on a continuum from “masculine boy” to “feminine girl”, gradually decreasing their masculinity ratings as ΔF increased.</p><p>Conclusions/Significance</p><p>These results indicate that the role of ΔF in voice gender perception, which has been reported in adult voices, extends to pre-pubertal children's voices: variation in ΔF not only affects the perceived sex, but also the perceived masculinity or femininity of the speaker. We discuss the implications of these observations for the expression and perception of gender in children's voices given the absence of anatomical dimorphism in overall vocal tract length before puberty.</p></div

    Comparing genetic diversity in three threatened oaks

    Get PDF
    Genetic diversity is a critical resource for species’ survival during times of environmental change. Conserving and sustainably managing genetic diversity requires understanding the distribution and amount of genetic diversity (in situ and ex situ) across multiple species. This paper focuses on three emblematic and IUCN Red List threatened oaks (Quercus, Fagaceae), a highly speciose tree genus that contains numerous rare species and poses challenges for ex situ conservation. We compare the genetic diversity of three rare oak species-Quercus georgiana, Q. oglethorpensis, and Q. boyntonii-to common oaks; investigate the correlation of range size, population size, and the abiotic environment with genetic diversity within and among populations in situ; and test how well genetic diversity preserved in botanic gardens correlates with geographic range size. Our main findings are: (1) these three rare species generally have lower genetic diversity than more abundant oaks; (2) in some cases, small population size and geographic range correlate with genetic diversity and differentiation; and (3) genetic diversity currently protected in botanic gardens is inadequately predicted by geographic range size and number of samples preserved, suggesting non-random sampling of populations for conservation collections. Our results highlight that most populations of these three rare oaks have managed to avoid severe genetic erosion, but their small size will likely necessitate genetic management going forward

    Climate and southern Africa's water-energy-food nexus

    Get PDF
    In southern Africa, the connections between climate and the water-energy-food nexus are strong. Physical and socioeconomic exposure to climate is high in many areas and in crucial economic sectors. Spatial interdependence is also high, driven for example, by the regional extent of many climate anomalies and river basins and aquifers that span national boundaries. There is now strong evidence of the effects of individual climate anomalies, but associations between national rainfall and Gross Domestic Product and crop production remain relatively weak. The majority of climate models project decreases in annual precipitation for southern Africa, typically by as much as 20% by the 2080s. Impact models suggest these changes would propagate into reduced water availability and crop yields. Recognition of spatial and sectoral interdependencies should inform policies, institutions and investments for enhancing water, energy and food security. Three key political and economic instruments could be strengthened for this purpose; the Southern African Development Community, the Southern African Power Pool, and trade of agricultural products amounting to significant transfers of embedded water

    Why are Some Plant Species Missing from Restorations? A Diagnostic Tool for Temperate Grassland Ecosystems

    Get PDF
    The U.N. Decade on Ecosystem Restoration aims to accelerate actions to prevent, halt, and reverse the degradation of ecosystems, and re-establish ecosystem functioning and species diversity. The practice of ecological restoration has made great progress in recent decades, as has recognition of the importance of species diversity to maintaining the long-term stability and functioning of restored ecosystems. Restorations may also focus on specific species to fulfill needed functions, such as supporting dependent wildlife or mitigating extinction risk. Yet even in the most carefully planned and managed restoration, target species may fail to germinate, establish, or persist. To support the successful reintroduction of ecologically and culturally important plant species with an emphasis on temperate grasslands, we developed a tool to diagnose common causes of missing species, focusing on four major categories of filters, or factors: genetic, biotic, abiotic, and planning & land management. Through a review of the scientific literature, we propose a series of diagnostic tests to identify potential causes of failure to restore target species, and treatments that could improve future outcomes. This practical diagnostic tool is meant to strengthen collaboration between restoration practitioners and researchers on diagnosing and treating causes of missing species in order to effectively restore them
    • 

    corecore