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Abstract. In this paper, we use Hidden Markov Models (HMM) and
Mel-Frequency Cepstral Coefficients (MFCC) to build statistical models
of classical music composers directly from the music datasets. Several
musical pieces are divided by instruments (String, Piano, Chorus, Or-
chestra), and, for each instrument, statistical models of the composers
are computed. We selected 19 different composers spanning four centuries
by using a total number of 400 musical pieces. Each musical piece is clas-
sified as belonging to a composer if the corresponding HMM gives the
highest likelihood for that piece. We show that the so-developed models
can be used to obtain useful information on the correlation between the
composers. Moreover, by using the maximum likelihood approach, we
also classified the instrumentation used by the same composer. Besides
as an analysis tool, the described approach has been used as a classi-
fier. This overall originates an HMM-based framework for supporting
accurate classification of music datasets. On a dataset of String Quartet
movements, we obtained an average composer classification accuracy of
more than 96%. As regards instrumentation classification, we obtained an
average classification of slightly less than 100% for Piano, Orchestra and
String Quartet. In this paper, the most significant results coming from
our experimental assessment and analysis are reported and discussed in
detail.

1 Introduction

In the field of music information analysis, much research has been done in music
genre classification, where a model is introduced in order to assign an unknown
musical piece a score to a certain class, for example style, period, composer or
region of origin. Two main categories of models have been used to do that: global
feature models (e.g., [16]) and n-gram models (e.g., [29]). Global feature models
represents every musical piece as a feature vector and use standard machine
learning classifiers, whereas n-gram models rely on sequential features and use
sequential machine learning algorithms, such as Hidden Markov Models (HMM)

(e.g., [15]).



In this paper, we apply features derived from the source-filter model [12]
and HMMs to analyze and classify pieces of classical music, thus combining the
two paradigms. This overall originates an HMM-based framework for support-
ing accurate classification of music datasets. Basically, in this work we adopt the
approach that is usually applied to human voice, namely Mel-Frequency Cep-
stral Coefficients (MFCC) (e.g., [12]), and left-to-right HMMs. Indeed, these
approaches, in recent initiatives (e.g., [1,14,4, 11,27, 21, 33, 22]), have also been
used for musical genre and instrument classification.

We have considered several types of music recording, both choral and in-
strumental, and we used them to develop statistical models using a classical
sequential algorithm. The models have been used to find correlations between
composers using the same instrument. Qur results shows that this approach can
be used both for composer analysis and composer classification. Moreover, the
same approach has been used to classify the instrumentation used by a composer,
but with some limitation: drums and similar instruments are not well described
with the source-filter features and this is verified by our results. For other types
of instruments, this method works in a satisfactory way.

Our experimental analysis developed in our research works as follows. We
have divided the 400 musical works for composer and instruments. For exam-
ple, considering Mozart, we selected ten pieces of Piano (in the following called
Mozart-Piano dataset), ten pieces of Orchestra and ten pieces of String Quar-
tet compositions of this author. Of the ten pieces, five pieces are used for the
training set and five for the testing set. In addition to this, each piece is then
split in two sub-pieces, as follows: only the initial 4 minutes of each piece are
used for training the models and the following 4 minutes for testing purposes
(of course, the pieces can be longer). By incremental training, we developed an
HMM model of Mozart-Piano, a model of Mozart-Orchestra and a model of
Mozart-String Quartet, and so forth for each composer. Then, all the available
Piano compositions are used to compute the likelihood that the musical piece
was produced by the Mozart-Piano HMM, and so forth for the other composi-
tions. The confusion matriz obtained on a maximum likelihood basis describes
the relations between the composers using the same instrument. As we show in
our experimental assessment and analysis, the obtained results are well-justified
on the basis of the known influence among composers. Therefore, a key contribu-
tion of this work is to show that left-right HMM and MFCC features can be used
to obtain an accurate model of each composer, thus achieving a composite clas-
sification framework for music datasets. Indeed, the obtained statistical models
can be used to describe the relations among the composers. Our experimental
assessment and analysis confirms the benefits coming from our proposal.

The remaining part of this paper is organized as follows. In Section 2, previous
work on classical music classification are reported and discussed. In Section 3, our
proposed classification framework is described. In Section 4, the experimental re-
sults related to the classification of composers and instrumentation are reported.
Final remarks and future work analysis conclude the paper in Section 5.



2 Related Work

Genre classification has been studied by Yaslan and Cataltepe [32]. They intro-
duce a semi-supervised random feature ensemble method for audio classification
that uses labeled and unlabeled data together. Genre classification of classical
music has been addressed by Pollastri and Simoncelli [24] by using melody as
features and HMM as classifier. They tested the algorithm using four composers.
In [17], the MFCCs have been compared to other features for music classifica-
tion, showing that they are simpler but effective for this purpose. Moreover,
approaches based on MFCCs have been used to perform music segmentation
(e.g., [3])- In [23], the detection of voice segments in music songs is described.
This solution extracts the MFCCs of the sound and uses an HMM to infer if the
sound has voice. Marinescu and Ramirez report in [20] an approach that aims at
developing models of singers and use them to generate expressive performances
similar in voice quality and style with the original singers. Their approach is
based on applying machine learning to discover singer-specific timing patterns
of expressive singing based on existing performances.

[25] proposes to classify latin music data by exploiting the “cifras” of the
songs. [13] focuses on the classification of music data based on lyrics by using
non-emotional words. Canonical correlation analysis is instead exploited in [2]
to classify Greek folk music. Acoustic and visual features to support music data
classification are discussed in [30], whereas global feature models and variable
neighborhood search are exploited in [16].

Interesting are also some recent music classification approaches in the context
of deep learning. For instance, [18] proposes to use deep neural networks to
support music genre classification. Convolutional neural networks are instead
argued in [34] to be a good classifier for music genre data.

Finally, supervised and semi-supervised methods are studied in [26] and [31],
respectively.

3 A Framework for Supporting Accurate Classification of
Music Datasets based on HMM

In this Section, we describe our proposed framework for supporting accurate
classification of music datasets, by also highlighting the different types of mod-
els that we compare in our experimental campaign. Figure 1 provides an overview
of our HMM-based classification framework. It essentially comprises two main
components: (i) Feature Extraction and (i) DHMM. The first one is the com-
ponent devoted to extract suitable features from the target music dataset. The
second one implements the Discrete HMM (DHMM) (e.g., [15]) embedded in
our proposal. As we describe in Section 3.3, our choice was to select the discrete
case as to take advantages from the discrete representation and mapping in data
processing.
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Fig. 1. HMM-Based Classification Framework

3.1 Music Dataset

Our target music dataset comprises a total number of 19 composers, with dif-
ferent styles spanning four centuries, from the 17th to the 20th century, namely:
Bach, Bartok, Beethoven, Berg, Chopin, Debussy, Dvorak, Haydn, Liszt, Mahler,
Martinu, Mendelssohn, Mozart, Palestrina, Rihm, Schmittke, Schoenberg, Schu-
mann, Stravinsky. For the sake of completeness, some musical compositions used
in this study are listed, by composer, in the following:

— Bach: choral works from BWV225 to BWV229, and the orchestral music
from 1046 to 1051;

— Beeethoven: piano sonatas from 7 to 57, string quartets from Op.127 to
Op.135, orchestra symphonies from n.1 to n.9;

— Chopin: piano concerto from Op.11 to Op.21, piano suites from Op.22 to
Op.52;

— Mahler: symphonies from n.1 to n.6;

— Mozart: string quartets from KV169 to KV465, orchestra symphonies from
n.1 to n.6, piano sonatas from n.10 to n.14;

— Debussy: the piano compositions Arabesque, Ballade, Pagodes, Danse, Im-
ages Hommage, Images Reflects, La Boite per Tableau, Nocturne, Preludio,
La Cathedrale, Clair de Lune.



3.2 Feature Extraction

A well-known, simple model of many sounds, like speech and some music, is
the source-filter model [12], which we used as fundamental feature extraction
model. According to this model, sound is the convolution between the impulse
response of a filter with a source signal. For example, in wind instruments, the
filter describe the acoustic characteristics of the instrument and the source signal
is the signal produced by the reed. The problem is therefore to separate the filter
from the source component, which requires ad-hoc deconvolution operations.
One of the approaches to solve this problem is to use homomorphic deconvo-
lution [28]. Let x(n) the result of a convolution operation between two signals,
the cepstrum of z(n) is obtained by taking the logarithm of the spectrum of
x(n). Under some circumstances, it is possible to separate the two components.
To this end, we use a filter bank, spaced uniformly on a Mel scale, and we con-
sidered the output power of these filters in the center of each band-pass filter.
We can interpret the output of a single band-pass filter as the k-th component
of the DFT of the input sequence z(n), denoted by X (k) and defined as follows:

X(k) =" a(n)ed ¥ (1)

n=0
Since we are interested in the center frequencies of the band-pass filters, the
k-th frequency is moved by . Therefore:

N—-1 N—1
X(k‘) = Z x(n)ej[%"lﬁﬁ]n — Z m(,n)ej%’n(k—oﬁ) (2)
n=0 n=0

On the basis of this approach, we compute the MFCCs as the z(n) obtained
in terms of the inverse filter of Equation (2), as follows:

M
z(n) = Z X (k) cos(2m(k — 0.5)n/N) (3)
k=0

where X (k) is the logarithm of the output energy for the k-th triangular filter,
N is the number of filters and M is the number of MFCCs.

3.3 Discrete Hidden Markov Models

In our framework, we make use of DHMM. Markov models describe time series
from a stochastic point of view, taking into account the correlations of signals
(e.g., [15]).

In HMMs, the output for each state corresponds to an output probability
distribution instead of a deterministic event. That is, if the observations are se-
quences of discrete symbols chosen from a finite alphabet, then, for each state, a
corresponding discrete probability distribution describes the stochastic process
to be modeled. It is worth noting that, in our framework, we use discrete o0b-
servations, by converting the MFCCs in discrete symbols using standard vector



quantization [19], thus achieving the DHMM. The usage of DHMM is motivated
by the fact that introducing less symbols makes the model simpler and, at the
same, more solid. On the other hand, while it is still possible to convert the
continuous observations into discrete ones using vector quantization, some per-
formance degradation due to the quantization process is, however, introduced.
Therefore, from a performance point-of-view, it is important to use an overall
continuous formulation of algorithms, and consequently introduce ad-hoc opti-
mizations. Our framework adheres to this computational paradigm.

4 Experimental Assessment and Analysis

In this Section, we provide the results of our experimental assessment and anal-
ysis devoted to stress the accuracy of the proposed classification framework. In
our experimental campaign, we acquired all the sounds at 11025 Hz with 16
bits. The signal is divided in non overlapping frames of 200 samples, or 18.14
ms, for the subsequent processing. The first problem we explore in this study
is the following: what is the best training duration of the DHMM? The second
problem is the choice of the number of centroid of the DHMM. The third prob-
lem is the choice of the number of states of the DHMM. The last two problems
have the following answer: the best results were obtained with 256 centroid and
48 states, so we used these parameters for all the experiments. Regarding the
training duration, we computed the average classification accuracy over all the
composers and all the instrumentation.

Accuracy [%]

0.03 0.3 3.0 0.03 03 3.0
Training duration [min]

Fig. 2. Average Classification Accuracy for all the Composers (left group of 3 bars)
and Instrumentation (right group of 3 bars), for Different Training Durations

In more details, Figure 2 reports, by using a bar shape, the average accuracies
obtained for the composers and instrumentation, respectively, for three different
DHMM training lengths over the 4 minutes basis (see Section 1): 0.03, 0.3 and
3.0 minutes. We observe that the minimum training length to get good enough
results is 3.0 minutes. Furthermore, with more than 3.0 minutes DHMM training,
the accuracy tends to be asymptotic. While this experiment provides average



results, it is more interesting to look at the detailed results given as confusion
matrixes, as reported in the following Sections.

4.1 Experimental Results for Composer Classification

In this Section, we report the classification results of composers using the same
instrumentation, by using the confusion matrix model. The first test is concerned
with the choral compositions of Bach, Palestrina and Schnittke (see Table 1).
Looking at the confusion matrix, we observe that Schnittke is often confused
with Palestrina. This is probably due to the fact that the Russian composers of
the 20th century were influenced by the composition techniques of the Italian
and Flemish schools of the 16th century.

Chorus | Bach |Palestrina|Schnittke
Bach |83.3 %| 16.7 % 0%
Palestrinal 0 % 98.9 % 0%
Schnittke | 0 % 25 % 75 %

Table 1. Chorus Classification Performance

Then, we study the String Quartet compositions (see Table 2).

Quartet |Bartok|Beethoven|Dvorak|Haydn| M artinu|M endelssohn|Mozart|Rihm|Schoenberg
Bartok  [98.7 % 0% 0% 0% 0% 0% 0% | 0% 0%
Beethoven | 0% 92 % 0% 0% 0% 0% 8% | 0% 0%
Dvorak 0% 0% 98.5%| 0% 0% 0% 0% | 0% 0%
Haydn 0 % 0% 0% [98.6%| 0% 0% 0% | 0% 0 %
Martinu 0% 0% 0% 0% | 991 % 0% 0% | 0% 0%
Mendelssohn| 0 % 0% 0% 0% 0% 98.9 % 0% | 0% 0%
Mozart 0% 0% 0% 0% 0% 0% 99.2 % | 0 % 0%
Rihm 0% 0% 0% 0% 0% 0% 0% 192 % 8 %
Schoenberg | 0% 0% 0% 0% 0% 0% 0% |16 % 84 %

Table 2. String Quartet Classification Performance

Looking at the confusion matrix in Table 2, we observe that some confusion
between Beethoven and Mozart, and Rihm and Shoenberg, respectively, arise.
The confusion between Beethoven and Mozart can be justified by the fact that




Beethoven was part of the transition of the Classical to the Romantic periods
while Mozart was a composer of the Classical period. Moreover, we observe some
confusion between Rihm and Schoenberg. Also, this results can be justified by
the fact that Rihm is a German composer while Schoenberg was an Austrian
composer, associated with the German expressionist movement, and the former
work of Rihm was inspired by the Schoenberg’s expressionist period.

Next, we make some tests with the Orchestra compositions (see Table 3).

Orchestra | Bach |Beethoven| Berg |Chopin|M ahler|Stravinsky

Bach 33.3 % 0% 333 %333 %| 0% 0%
Beethoven| 0 % 83.3% [16.7%| 0% 0% 0%
Berg 0% 0% 83.3 %|16.7 %| 0% 0%
Chopin 0% 33.3 % 0% [66.7%| 0% 0%

Mahler | 0% 0% 50 % | 16.7 % | 33.3 % 0%
Stravinsky|16.6 %| 0% 16.6 %| 50 % |16.6 % 0%
Table 3. Orchestra Classification Performance

From the confusion matrix in Table 3, there are some results to be discussed.
The most notably result is probably that Stravinsky failed to be recognized as
himself, and this can be justified by the fact that he used a lot of percussion
in his compositions, and the MFCC, which are derived by a source-filter model
of the signal being analyzed, do not describe well this type of sound. Another
notably result is that Stravinsky’s models are confused with Chopin. This result
could be justified by the fact that that the musical pieces used for training
Chopin’s models for orchestral music were concerts for Piano and Orchestra
(mainly Op.11) that inspired Stravinsky’s work. On the other hand, Chopin is
not confused with Stravinsky simply because he died before Stravinsky. There is
also some confusion between Bach and Chopin while it is not true the opposite.
In fact, Bach’s model were obtained using Bach’s Brandenburg Concertos which
did not use instruments typical of Chopin’s orchestral music. We also observe
an important confusion between Mahler’s models and Berg’s models, while the
opposite does not hold. The linkage between Mahler and Berg can be explained
by the fact that Mahler was related with Schoenberg as regards for example the
instrumental technique, and Berg was a Schoenberg alumnus.

The classification performances are generally good, with the exception of
Chopin, Bach and Stravinsky. Concerning the orchestral compositions of Chopin,
it it worth noting that his music considered for training the DHMM are concerts
for piano and orchestra. Concerning Bach, his Brandenburg Concertos didn’t
use percussion or other instruments typical of the orchestral music of following
years,as Chopin used. The Stravinsky’s poor results can be justified by the fact
that he use a lot of percussion, and the source-filter model is not able to model
this type of sound.



The last experiments are concerned with the compositions for Piano (see
Table 4).

Piano |Beethoven|Chopin|Debussy| Liszt |Mozart|Schumann
Beethoven| 98.7 % 0% 0% 0% 0% 0%
Chopin 0% 66.6 %| 0% 0% |16.6 %| 16.6 %
Debussy 0% 16.7%| 50% | 0% | 0% 333 %
Liszt 0% 333%| 0% 1333 %|16.6%| 16.6 %
Mozart 0% 0% 0% 0% |66.7%| 33.3%
Schumann| 50 % 0% 0% 0% 0% 50 %
Table 4. Piano Classification Performance

In this case, an important result is the confusion between Debussy and Schu-
mann. This may mean that Debussy was greatly inspired by Schumann. We note
also that in some cases Debussy is confused with Chopin. In fact, Debussy was
a Chopin’s alumnus. Also, there is an important confusion between Schumann
and Beethoven, which may mean that the Beethoven’s influence on Schumann
was quite important. From the results of Table 4, it is worth noting that there
is an important confusion between Liszt and Chopin. In fact, under the influ-
ence related with the friendship with Chopin, Liszt’s developed his poetic and
romantic side.

A first conclusion of this set of experiments is that the features derived from
the source-filter model are best suitable to model speech (coral compositions),
String and Piano sounds. A second conclusion is that the classification results
are well justified in terms of the influence of one composer on another one, thus
meaning that the described method can be used to study the influence between
composers.

4.2 Experimental Results for Instrumentation Classification

In this Section, we report the classification results of the instrumentation by the
same composer, by using the confusion matrix model. In this case we also con-
sidered three different instruments: Piano Solo, String Quartet and Orchestra.
In Table 5 and Table 6, we observe that these three settings are successfully
recognized for Beethoven’s and Mozart’s works.

We have also obtained good classification of instrumentation for Haydn’s (see
Table 7) and Schubert’s (see Table 8) works.

Even from the second set of experiments, we can conclude that our proposed
framework provides a good accuracy in the case of instrument classification too,
thus proving its flexibility and reliability.



Beethoven| Piano|Orchestra|Quartet
Piano (984 %| 0% 0%

Orchestra| 0% | 98.7 % 0%
Quartet | 0% 0% 98.9 %

Table 5. Instrument Classification of Beethoven’s Works

Mozart | Piano|Orchestra|Quartet

Piano 1[99.1 %| 0% 0%
Orchestral 0 % 98.2 % 0 %

Quartet | 0% 0% 98.8 %
Table 6. Instrument Classification of Mozart’s Works

Haydn | Piano|Orchestra|Quartet

Piano [98.3 %| 0% 0 %
Orchestra| 10 % 90 % 0%

Quartet | 0% 0% 98.8 %
Table 7. Instrument Classification of Haydn’s Works

Schubert | Piano|Orchestra|Quartet
Piano (993 % 0% 0%

Orchestral 0 % 90 % 10 %
Quartet | 0% 0% 99.7 %

Table 8. Instrument Classification of Schubert’s Works

5 Final Remarks and Future Work

In this paper, we have proposed a classification framework that exploits the
source-filter approach and HMM machine learning techniques for classifying mu-
sical recordings. While our framework is rather simple, it proved to ensure good
classification accuracy. The experimental results show that these methodologies
are well-suited for modeling classical music even when no voices are present in
the recordings. A major limitation of this method is due to the weak behaviors
in modeling drums, as the feature extraction technique we used removes quite
completely such frequencies. This can lead to a modification of the approach to
take into account this aspect in future works. Another important line of research
to explore concerns with making the proposed framework able to deal with novel
challenges posed by emerging big data trends (e.g., [9,10,7,5,6,8].
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