52 research outputs found

    Ontogeny influences sensitivity to climate change stressors in an endangered fish.

    Get PDF
    Coastal ecosystems are among the most human-impacted habitats globally, and their management is often critically linked to recovery of declining native species. In the San Francisco Estuary, the Delta Smelt (Hypomesus transpacificus) is an endemic, endangered fish strongly tied to Californian conservation planning. The complex life history of Delta Smelt combined with dynamic seasonal and spatial abiotic conditions result in dissimilar environments experienced among ontogenetic stages, which may yield stage-specific susceptibility to abiotic stressors. Climate change is forecasted to increase San Francisco Estuary water temperature and salinity; therefore, understanding the influences of ontogeny and phenotypic plasticity on tolerance to these critical environmental parameters is particularly important for Delta Smelt and other San Francisco Estuary fishes. We assessed thermal and salinity limits in several ontogenetic stages and acclimation states of Delta Smelt, and paired these data with environmental data to evaluate sensitivity to climate-change stressors. Thermal tolerance decreased among successive stages, with larval fish exhibiting the highest tolerance and post-spawning adults having the lowest. Delta Smelt had limited capacity to increase tolerance through thermal acclimation, and comparisons with field temperature data revealed that juvenile tolerance limits are the closest to current environmental conditions, which may make this stage especially susceptible to future climate warming. Maximal water temperatures observed in situ exceeded tolerance limits of juveniles and adults. Although these temperature events are currently rare, if they increase in frequency as predicted, it could result in habitat loss at these locations despite other favourable conditions for Delta Smelt. In contrast, Delta Smelt tolerated salinities spanning the range of expected environmental conditions for each ontogenetic stage, but salinity did impact survival in juvenile and adult stages in exposures over acute time scales. Our results underscore the importance of considering ontogeny and phenotypic plasticity in assessing the impacts of climate change, particularly for species adapted to spatially and temporally heterogeneous environments

    Consequences of temperature and temperature variability on swimming activity, group structure, and predation of endangered delta smelt

    Get PDF
    The effects of water temperature on individual and group movement behaviour in prey fish can affect ecological interactions such as competition and predation, but how variability in temperature influence fish behaviour is less understood. Of particular concern is how increased warming in tidally fluctuating estuaries may impact the native and endangered delta smelt (Hypomesus transpacificus, Osmeridae). To help address this issue, we tested the effects of increased water temperature (fluctuating [17–21°C] and warm [21°C] acclimated treatments) on juvenile delta smelt individual and group behaviour, response to chemical alarm and predator cues, as well as capacity to evade predation. In addition, predation of delta smelt was tested in the presence of a dominant invasive competitor, Mississippi silversides (Menidia beryllina, Atherinopsidae), as well as comparative predation mortality on Mississippi silversides when isolated. After 7 days of increased temperature treatments, delta smelt in the warm treatment increased swimming velocity, decreased turning angle, and altered group structure with larger inter-individual distances compared to fish in the control (17°C) and fluctuating temperature treatments. Following conspecific and predator chemical alarm cues, delta smelt showed anti-predator responses. Control and fluctuating treatment fish responded to conspecific cues with increased swimming speeds, decreased inter-individual distances and near-neighbour distances, and, after 15 min, fish recovered back to baseline behaviours. In contrast, fish in the warm treatment had not recovered after 15 min, and swimming speeds were maintained at roughly 25 cm/s, close to maximum capabilities. Fish in control and fluctuating treatments showed minimal responses to predator cues, whereas delta smelt exposed to warm conditions significantly increased swimming speeds and decreased turning angle. Predation of delta smelt by largemouth bass (Micropterus salmoides, Centrarchidae) was greatest under the warm treatment, correlating with altered behaviours of delta smelt; however, predation of Mississippi silversides was greater than delta smelt, independent of temperature. This study provides novel insight into the group behaviour of delta smelt, their response to predation, and how prolonged exposure to elevated temperature may induce negative individual and group behaviours causing alterations in predator–prey dynamics. This work highlights the importance of testing ecologically realistic temperature fluctuations in experiments as delta smelt had significantly altered responses to elevated temperature, dependent on variability of warming

    Interpopulation differences in expression of candidate genes for salinity tolerance in winter migrating anadromous brown trout (Salmo trutta L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Winter migration of immature brown trout (<it>Salmo trutta</it>) into freshwater rivers has been hypothesized to result from physiologically stressful combinations of high salinity and low temperature in the sea.</p> <p>Results</p> <p>We sampled brown trout from two Danish populations entering different saline conditions and quantified expression of the <it>hsp70 </it>and <it>Na/K-ATPases α 1b </it>genes following acclimation to freshwater and full-strength seawater at 2°C and 10°C. An interaction effect of low temperature and high salinity on expression of both <it>hsp70 </it>and <it>Na/K-ATPase α 1b </it>was found in trout from the river entering high saline conditions, while a temperature independent up-regulation of both genes in full-strength seawater was found for trout entering marine conditions with lower salinities.</p> <p>Conclusion</p> <p>Overall our results support the hypothesis that physiologically stressful conditions in the sea drive sea-run brown trout into freshwater rivers in winter. However, our results also demonstrate intra-specific differences in expression of important stress and osmoregulative genes most likely reflecting adaptive differences between trout populations on a regional scale, thus strongly suggesting local adaptations driven by the local marine environment.</p

    Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures

    Get PDF
    The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations

    Population-Specific Responses to Interspecific Competition in the Gut Microbiota of Two Atlantic Salmon (Salmo salar) Populations

    Get PDF
    The gut microbial community in vertebrates plays a role in nutrient digestion and absorption, development of intestine and immune systems, resistance to infection, regulation of bone mass and even host behavior and can thus impact host fitness. Atlantic salmon (Salmo salar) reintroduction efforts into Lake Ontario, Canada, have been unsuccessful, likely due to competition with non-native salmonids. In this study, we explored interspecific competition effects on the gut microbiota of two Atlantic salmon populations (LaHave and Sebago) resulting from four non-native salmonids. After 10 months of rearing in semi-natural stream tanks under six interspecific competition treatments, we characterized the gut microbiota of 178 Atlantic salmon by parallel sequencing the 16S rRNA gene. We found 3978 bacterial OTUs across all samples. Microbiota alpha diversity and abundance of 27 OTUs significantly differed between the two populations. Interspecific competition reduced relative abundance of potential beneficial bacteria (six genera of lactic acid bacteria) as well as 13 OTUs, but only in the LaHave population, indicating population-specific competition effects. The pattern of gut microbiota response to interspecific competition may reflect local adaptation of the host-microbiota interactions and can be used to select candidate populations for improved species reintroduction success

    Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2

    Get PDF
    Ocean acidification (OA) has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO2 that exceed OA projections for the near future. To understand the influence of dynamic pCO2 on an important reef calcifier, we tested the response of the crustose coralline alga Porolithon onkodes to oscillating pCO2. Individuals were exposed to ambient (400 ??atm), high (660 ??atm), or variable pCO2 (oscillating between 400/660 ??atm) treatments for 14 days. To explore the potential for coralline acclimatization, we collected individuals from low and high pCO2 variability sites (upstream and downstream respectively) on a back reef characterized by unidirectional water flow in Moorea, French Polynesia. We quantified the effects of treatment on algal calcification by measuring the change in buoyant weight, and on algal metabolism by conducting sealed incubations to measure rates of photosynthesis and respiration. Net photosynthesis was higher in the ambient treatment than the variable treatment, regardless of habitat origin, and there was no effect on respiration or gross photosynthesis. Exposure to high pCO2 decreased P. onkodes calcification by >70%, regardless of the original habitat. In the variable treatment, corallines from the high variability habitat calcified 42% more than corallines from the low variability habitat. The significance of the original habitat for the coralline calcification response to variable, high pCO2 indicates that individuals existing in dynamic pCO2 habitats may be acclimatized to OA within the scope of in situ variability. These results highlight the importance of accounting for natural pCO2 variability in OA manipulations, and provide insight into the potential for plasticity in habitat and species-specific responses to changing ocean chemistry.Funding was provided by grants from the National Science Foundation (OCE-0417412, OCE-10-26852, OCE-1041270) and gifts from the Gordon and Betty Moore Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • …
    corecore