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Abstract

Background: As ectothermic organisms have evolved to differing aquatic climates, the molecular basis of thermal
adaptation is a key area of research. In this study, we tested for differential transcriptional response of ecologically
divergent populations of redband trout (Oncorhynchus mykiss gairdneri) that have evolved in desert and montane
climates. Each pure strain and their F1 cross were reared in a common garden environment and exposed over four

two strains (montane =58; F1 = 192).

Transcriptome

weeks to diel water temperatures that were similar to those experienced in desert climates within the species’
range. Gill tissues were collected from the three strains of fish (desert, montane, F1 crosses) at the peak of heat
stress and tested for MRNA expression differences across the transcriptome with RNA-seq.

Results: Strong differences in transcriptomic response to heat stress were observed across strains confirming that
fish from desert environments have evolved diverse mechanisms to cope with stressful environments. As expected,
a large number of total transcripts (12,814) were differentially expressed in the study (FDR < 0.05) with 2310
transcripts in common for all three strains, but the desert strain had a larger number of unique differentially
expressed transcripts (2875) than the montane (1982) or the F1 (2355) strain. Strongly differentiated genes (>4 fold
change and FDR < 0.05) were particularly abundant in the desert strain (824 unique contigs) relative to the other

Conclusions: This study demonstrated patterns of acclimation (i.e, phenotypic plasticity) within strains and
evolutionary adaptation among strains in numerous genes throughout the transcriptome. Key stress response
genes such as molecular chaperones (i.e., heat shock proteins) had adaptive patterns of gene expression among
strains, but also a much higher number of metabolic and cellular process genes were differentially expressed in the
desert strain demonstrating these biological pathways are critical for thermal adaptation to warm aquatic climates.
The results of this study further elucidate the molecular basis for thermal adaptation in aquatic ecosystems and
extend the potential for identifying genes that may be critical for adaptation to changing climates.
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Background

Thermal adaptation is a widespread phenomenon in
organisms that are exposed to variable and extreme en-
vironments. While some organisms may alter their dis-
tribution or behavior to avoid stressors and others may
acclimate through physiological plasticity [1,2], many
species evolve adaptive responses to local conditions over
generations through natural selection [3-5]. Evolutionary
adaptation to local environments has been demonstrated
across a wide variety of taxa [6], and is expected to play a
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critical role for species with limited dispersal capabilities.
However, few studies have identified the underlying mo-
lecular mechanisms that have led to conspecific adapta-
tion to thermal conditions.

Molecular techniques such as RNA-seq [7] provide the
opportunity to investigate transcriptional response to ther-
mal stress and further identify mechanisms for thermal
adaptation. Patterns of gene expression under heat stress
are important to determining evolutionary adaptation
among conspecific populations that occupy various en-
vironments. Multiple genes have been shown to be in-
volved in heat tolerance across many species, including
highly conserved heat shock proteins (hsps) that are
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upregulated under stressful conditions such as exposure
to heat [8,9]. An adaptive heat shock response has add-
itionally been shown to occur among conspecific popula-
tions that occupy variable environments [3,10]. However,
many genes are known to have a role in regulating the
effects of temperature and are likely to be involved in ther-
mal adaptation [11,12]. Thus, RNA-seq provides the op-
portunity to investigate differential expression across the
transcriptome and identify biological pathways involved in
evolutionary response to thermal stress.

Redband trout (Oncorhynchus mykiss gairdneri) oc-
cupy highly variable environments including both mon-
tane and desert streams and have been shown to be
locally adapted to these different environments [13]. Pre-
vious research has demonstrated an adaptive heat shock
response among populations from different climates but
also suggests that additional mechanisms are involved
with thermal adaptation [14]. This species appears to
have evolved a finely tuned heat shock response that
likely requires additional genes to balance the short term
(immediate cellular damage) and long term (fitness) costs
associated with thermal stress. Given that oxygen delivery
is limiting for fish under climate-related stressors [15],
genes involved in oxygen transport are expected to play a
significant role. Additionally, we expect that metabolic
and immune pathways could be involved given the energy
demands and potential for disease under chronic environ-
mental stress [16,17]. Therefore, this study tests for mo-
lecular response to heat stress across the transcriptome of
ecologically divergent populations of redband trout that
have evolved under local climate regimes.

In this study, desert and montane strains of redband
trout and their F1 crosses were tested for differential gene
expression under heat stress in a common garden ex-
periment. We tested for both acute and chronic stress
response by quantifying gene expression in fish that
experienced diel water temperatures similar to desert
environments that peaked near their thermal maxima
(~28.5 C) over the course of four weeks. Tissues were
collected from each strain of redband trout at multiple
time points (Day 1, 3, 7, and 28) to test for both accli-
matization within each strain and evolutionary adaptation
between strains. Results are quantified to confirm the role
of hsp genes in these fish, but also identify additional
genes and biological pathways that are regulated to bal-
ance the costs of stress response in populations that
have evolved to desert environments.

Results

Sequence alignment to reference transcriptome

A total of 16 lanes for eight pooled libraries provided
2.30 billion quality filtered reads over all 72 samples. Read
numbers ranged from 22.40-72.40 M per sample, with an
overall mean of 31.96 M (Table 1). Read numbers were
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well balanced between treatment and control groups with
1.10 billion and 1.21 billion reads, respectively. Trimmed
60 bp reads were aligned with a minimum criterion of
95% identity to the reference transcriptome at an average
of 24.1% and 7.53 M reads per sample. Mean percent
alignment and mean number of aligned reads for each set
of biological replicates ranged from 11.1-40.9% and 3.32-
12.49 M, respectively (Additional file 1: Table S1). Reads
aligned to a total of 25,128 unique contigs from the refer-
ence transcriptome. The mean percentage of aligned reads
was not high (24.1%), but this experience is common for
non-model species [18]. Trade-offs exist between aligning
RNA-seq data to an existing reference transcriptome ver-
sus de-novo assembly [7,19,20]. We chose a conservative
approach by aligning to a published reference transcrip-
tome [21] that was assembled from multiple types of
tissues under stress response which should be more
representative than de-novo alignment with a single
tissue type.

Principal component analyses of overall gene expres-
sion data clearly showed that samples clustered by treat-
ment or control condition and also that distinct clusters
were present for the desert and montane strains, but the
cluster for the F1 strain overlapped with the montane
strain (Figure 1).

Differential expression

Differences in gene expression were highly significant
within each strain (Figure 2a), with 7,051 significant genes
for the desert strain (4,238 upregulated, 2,813 downre-
gulated), 6,906 for F1 crosses (3,375 upregulated, 3,531
downregulated), and 6,774 for montane (3,499 upregu-
lated, 3,275 downregulated). As expected, a large number
of total transcripts (12,814) were differentially expressed
in the study (FDR < 0.05) with 2,310 transcripts occurring
in common among all three strains, but the desert strain
had a larger number of unique differentially expressed
transcripts (2,875) than the montane (1,982) or the F1
(2,355) strain (Figure 2a). Strongly differentiated genes (>4
fold change and FDR <0.05; Figure 2b) were highly
abundant in the desert strain (824 unique transcripts;
Additional file 1: Table S1) relative to the other two
strains (montane = 58; Additional file 2: Table S2; F1 = 192;
Additional file 3: Table S3), particularly in upregulated
transcripts (Figure 3a-c).

Differences in gene expression were also observed over
time as the number of significant genes consistently de-
creased with more days of exposure to temperature stress
(Figure 4). The number of significant genes was 7,833 at
Day 1 (4,058 upregulated, 3,775 downregulated), 6,408 at
Day 3 (3,344 upregulated, 3,064 downregulated; 18.2%
decrease from Day 1), 3,624 at Day 7 (1,958 upregulated,
1,666 downregulated; 53.7% decrease from Day 1), and
1,269 at Day 28 (719 upregulated, 550 downregulated;
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Table 1 Summary data for redband trout samples including strain (LJ = Little Jacks Cr., K= Keithley Cr., LJxK = F1
crosses), temperature treatment (28°C treatment or 15°C control), sample day, sequencing reads (M = millions), and

reference alignment statistics (transcriptome is abbreviated in column heading as Transc.)

Mean Mean

Quality Transcr. Match (M)/ Transc. Match (%)/
Sample* Strain Temp Day Reads (M) Match (M) Strain Match (%) Strain
1 ] Trt-28C 1 28.1 4.6 70 16.2 23.1
2 L Trt-28C 1 313 82 26.2
3 LJ Trt-28C 1 30.1 8.1 26.8
4 L xK Trt-28C 1 304 12.1 12.5 39.8 409
5 LI x K Trt-28C 1 276 1.6 42.1
6 LI xK Trt-28C 1 336 13.7 409
7 K Trt-28C 1 324 13.1 121 404 403
8 K Trt-28C 1 314 134 425
9 K Trt-28C 1 259 99 380
10 ] Trt-28C 3 40.6 14.1 10.8 34.7 30.2
11 L Trt-28C 3 34.8 9.8 283
12 U Trt-28C 3 30.5 84 27.7
13 L xK Trt-28C 3 313 9.1 9.0 29.0 26.1
14 LxK Trt-28C 3 30.2 6.9 230
15 LJx K Trt-28C 3 4.7 109 263
16 K Trt-28C 3 27.3 9.6 70 352 244
17 K Trt-28C 3 283 76 270
18 K Trt-28C 3 343 38 11.0
19 LJ Trt-28C 7 29.3 124 91 424 292
20 U Trt-28C 7 315 94 299
21 LJ Trt-28C 7 35.1 54 155
22 L xK Trt-28C 7 285 10.8 105 379 38.2
23 L) x K Trt-28C 7 264 99 376
24 LI xK Trt-28C 7 280 109 39.1
25 K Trt-28C 7 374 6.8 52 182 166
26 K Trt-28C 7 28.7 50 17.3
27 K Trt-28C 7 27.8 4.0 14.2
28 ] Trt-28C 28 22.8 6.4 56 28.2 206
29 LJ Trt-28C 28 312 7.5 240
30 U Trt-28C 28 296 28 96
31 L xK Trt-28C 28 43.0 05 3.7 1.1 149
32 L) x K Trt-28C 28 241 4.1 16.9
33 LJx K Trt-28C 28 243 64 26.5
34 K Trt-28C 28 264 6.3 6.0 23.7 230
35 K Trt-28C 28 254 73 28.7
36 K Trt-28C 28 268 4.5 166
37 LJ Con-15C 1 238 74 6.9 31.2 270
38 LJ Con-15C 1 24.7 6.7 27.3
39 LJ Con-15C 1 294 6.6 22.5
40 L xK Con-15C 1 250 6.5 10.2 259 250
41 L) x K Con-15C 1 65.0 153 235
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Table 1 Summary data for redband trout samples including strain (LJ = Little Jacks Cr., K =Keithley Cr., LIxK=F1
crosses), temperature treatment (28°C treatment or 15°C control), sample day, sequencing reads (M = millions), and
reference alignment statistics (transcriptome is abbreviated in column heading as Transc.) (Continued)

42 L) x K Con-15C 1 342
43 K Con-15C 1 224
44 K Con-15C 1 27.1
45 K Con-15C 1 296
46 LJ Con-15C 3 24.2
47 LJ Con-15C 3 344
48 U Con-15C 3 300
49 L xK Con-15C 3 46.3
50 L xK Con-15C 3 27.0
51 LxK Con-15C 3 306
52 K Con-15C 3 26.7
53 K Con-15C 3 280
54 K Con-15C 3 285
55 ] Con-15C 7 24.3
56 U Con-15C 7 262
57 ] Con-15C 7 250
58 L xK Con-15C 7 332
59 LJxK Con-15C 7 326
60 LJxK Con-15C 7 273
61 K Con-15C 7 256
62 K Con-15C 7 27.8
63 K Con-15C 7 727
64 LJ Con-15C 28 350
65 LJ Con-15C 28 411
66 U Con-15C 28 36.1
67 L xK Con-15C 28 315
68 L) x K Con-15C 28 54.7
69 L x K Con-15C 28 373
70 K Con-15C 28 444
71 K Con-15C 28 415
72 K Con-15C 28 323
mean - - - 31.96

8.7 256

53 6.9 237 26.0
83 306

7.0 237

8.1 54 335 19.7
37 109

44 14.8

0.7 33 1.6 11.1
36 134

56 184

83 58 310 212
43 154

49 17.1

7.1 6.0 294 24.0
70 269

4.0 159

6.7 43 20.2 13.8
29 89

34 124

50 10.8 194 234
59 210

217 299

12.5 9.5 356 259
7.1 174

89 246

59 8.3 18.6 212
7.1 129

119 321

03 49 0.7 134
6.9 16.5

74 229

753 75 24.1 24.1

*Each sample includes 3 pooled RNA samples from the same rearing tank.

83.8% decrease from Day 1). This trend was consistent
with the expectation that the stress response would be-
come reduced with chronic exposure to heat stress.
Gene ontology and enrichment with Blast2GO revealed
that strongly differentiated genes in each strain (>4 fold
change and FDR<0.05) included several categories for
each of biological processes, molecular function, and cel-
lular components (Figure 5a-c; Additional files 4, 5 and 6:
Tables S4-6). Within biological process, there were a
total of 18 pathway categories at level 2 gene ontology,
but nearly 70% of the genes were included in five cate-
gories: cellular process (mean = 17.2%), metabolic process

(mean = 16.7%), response to stimulus (mean=12.2%),
single-organism process (mean =12.4%), and biological
regulation (mean = 10.3%; Figure 5a). Within molecular
function, there were a total of 11 pathway categories at
level 2 gene ontology with over 75% of the genes in two
categories: binding (mean =52.3%), and catalytic acti-
vity (mean = 24.3%; Figure 5b). Within cellular compo-
nents, there were a total of 10 pathway categories at
level 2 gene ontology, with over 80% of the genes in-
cluded in four categories: cell (mean = 31.3%), organelle
(mean = 24.8%), membrane (mean = 16.1%), and macro-
molecular complex (mean =10.5%; Figure 5c). Finally,
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Figure 1 Principal components analysis of overall transcriptome expression. Results for 18 samples of redband trout collected either at first
exposure to heat stress up to 28°C (darker shades) or on the same day from 15°C control temperature (lighter shades). Samples are color coded
by their environment: desert strain (red; LJ = Little Jacks Cr.), F1 crosses (gray; LJxK), montane strain (blue; K= Keithley Cr.).
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many of the genes that were found to be differentially
expressed relative to control fish in all strains and time
points were stress response genes such as various hsp
transcripts.

Patterns of gene expression for each strain over time
were compared with results from qPCR assays for heat
shock genes and were highly consistent with either
RNA-seq or qPCR data (Additional file 7: Figure S1).
Specifically, expression patterns showed that heat shock
genes were significantly lower for the desert strain at Day
1 for all hsp genes and all strains had decreased gene ex-
pression from Day 3 through the remainder of the experi-
ment as shown previously [14].

Discussion

Since thermal stress has broad biological effects on
organisms, transcriptional response is expected to be
highly diverse across several genes in ectothermic spe-
cies such as redband trout. This study confirms that
numerous genes are differentially expressed in redband
trout under heat stress, and several pathways are in-
volved. However, there were key pathways that contained
a large proportion of differentially expressed transcripts
including response to stimulus, metabolic processes, cel-
lular processes, molecular binding function, and cell
membrane function. These pathways correspond well with
previous studies that demonstrate these as critical physio-
logical components involved with of aquatic ectotherms

exposed to elevated water temperatures [17,22]. In par-
ticular, several physiological studies have linked thermal
tolerance with aerobic scope and emphasize the role of
metabolic processes in thermal adaptation (e.g., [22-24]).
The larger number of differentially expressed genes in the
desert strain versus the other two strains suggests that a
complex combination of genes has evolved for redband
trout in their desert environment. It is also possible that a
few genes with large pleiotropic effects could be respon-
sible for the pattern observed.

Evidence for acclimation to heat stress was extensive as
the number of differentially expressed transcripts de-
creased by 83.7% from Day 1 to Day 28. Results from this
study elaborate on previous findings in redband trout that
stress response genes are highly upregulated when ex-
posed to heat stress [25,14]. Multiple heat shock genes
(e.g., hsp70, hsp90, hsp47) were differentially expressed
in all strains and time periods. However, an acclimation
effect was evident as expression levels decreased over time
in all strains. This is consistent with theories of acclima-
tion to heat stress where organisms are able to moderate
their heat shock response over time, as opposed to initial
exposure where immediate survival is a priority [26].
However, the current results demonstrate that acclimation
within strains occurs throughout much of the transcrip-
tome and is not limited to heat shock genes.

More importantly, this study demonstrates that adap-
tive patterns of expression have evolved in ecologically
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Figure 2 Venn diagrams of differentially expressed genes.
Results of each strain of redband trout for a) all significant
transcripts (FDR < 0.05); and b) strongly differentiated transcripts
(>4 fold change and FDR < 0.05). Circles are color coded to
represent fish by their environment: desert strain (red; LJ = Little
Jacks Cr.), F1 crosses (gray; LIXK), montane strain (blue; K= Keithley Cr).
For a) there were 12,314 genes that were not statistically significant at

either level and are listed outside of the circles on the Venn diagram.
S J

divergent populations of this species. Results from Narum
et al. [14] specifically highlight the adaptive response of
heat shock genes in redband trout, with lower hsp gene
expression observed in desert versus montane strains. Re-
sults in heat shock genes from the current RNA-seq data
corroborate the previous qPCR results and emphasize that
warm adapted natural populations are likely to have
evolved a specialized heat shock response that reduces
physiological costs of hsp production. This result is con-
sistent with the adaptive heat shock response observed in
natural populations of other organisms such as killifish
(Fundulus heteroclitus; [27]) and Drosophila buzzatii [10].
This remains an important finding of this study and
provides clarification regarding evolutionary adaptation
of hsp gene expression in heat tolerant populations.
However, many recent studies indicate that complex
mechanisms are involved in thermal adaptation of aquatic
ectotherms beyond heat shock response (e.g., [22,28,29].
Indeed, this study of the transcriptome revealed adaptive
patterns in metabolic and cellular process genes that sug-
gest desert fish are more efficient at supporting these
pathways than montane fish under heat stress, and chro-
nic exposure may cause failure of these genes to be ex-
pressed in montane and F1 crosses and suggests that
some critical physiological functions become limited in
these strains over time. Previous studies suggest that
metabolic pathways may be particularly important since
metabolic energy stores are positively correlated with
physiological function and swimming behavior in ther-
mally adapted redband trout [16,17]. The general pat-
tern observed across the transcriptome for F1 crosses
indicates intermediate gene expression consistent with
additive variation, but there may be a maternal or do-
minant effect at some genes since more differentially
expressed genes were shared between the Fls and the
maternal montane strain than the desert strain.

A variety of immediate and long-term anthropoge-
nic disturbances such as habitat destruction and cli-
mate change have negative impacts on freshwater fish
[30,31] and the need to understand mechanisms for
thermal adaptation in these organisms is critical. Many
fishes have already been extirpated from large portions of
their historical range (e.g., [32]) and the effects of climate
change are expected to further alter species’ range, phen-
ology, and persistence [32-35]. Genomic and physiological
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Figure 3 Adaptation: differential expression for each strain of
redband trout across all time periods of heat stress versus fish
held at control temperatures. Results for a) desert strain from
Little Jacks Cr. b) F1 crosses; and c) montane strain from Keithley Cr.
Genes that are significantly differentiated (FDR < 0.05) are in red and
those that are not significant are in black. On a log, scale, the green
lines show genes that are 2 2 fold, and the blue lines designate
genes that are 2 4 fold. The x-axis is the mean expression of each
gene in counts per million reads (CPM) on a log, scale.
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mechanisms for thermal adaptation can be important
tools for conservation measures to enable long-term via-
bility of wild populations [36-38]. Specifically, this study
helps to further identify genomic tools such as genetic
screening with candidate genes that may be integrated
with measurements of cardiac function [22] in order to
screen broadly across species’ range to predict the poten-
tial for adaptation under scenarios of climate change [39].

Conclusions

This study demonstrates that redband trout from a des-
ert climate have a much larger number of strongly dif-
ferentially expressed genes than montane and F1 strains
in response to heat stress, suggesting that a combina-
tion of genes has evolved for redband trout to adapt in
their desert environment. Recent studies of physiological
adaptation in aquatic ectotherms indicate that intras-
pecific thermal tolerance is set by limitations in aerobic
performance, specifically the upper limit of heart rate to
deliver oxygen to tissues (e.g., [15,22,23]). This is due to
temperature dependent oxygen limitation in aquatic en-
vironments, a theory that has been well supported in
many organisms [40]. In order to support this increase
in cardiac performance, redband trout would need to
differentially regulate genes from multiple pathways in-
cluding those observed in this study (e.g., metabolic
pathways). However, further studies that specifically link
individual gene expression [41] with physiological func-
tions such as aerobic scope and heart rate are needed to
further elucidate the specific mechanisms involved with
thermal adaptation in this species. Development of a ref-
erence transcriptome and genome that are more specific
to this subspecies of O. mykiss would also provide better
annotation of genomic architecture of various traits such
as thermal adaptation.

Methods

Redband trout populations and thermal stress
experiments

To investigate thermal acclimation and adaptation of
redband trout (O. mykiss gairdneri) from desert and mon-
tane populations, fry of approximately four months of age
from each environment and their F1 crosses were exposed
to diel temperature cycles (peaking at 28°C) over a 4-week
period in a controlled setting. Gill tissues were collected
from euthanized individuals on day 1, 3, 7 and 28 to quan-
tify mRNA expression across the transcriptome. Gill tissue
was used for this study since oxygen transport and osmo-
regulation are expected to play important functional roles
in thermal adaptation.

Gametes and fry were collected from two ecologically
divergent populations: one from a desert climate stream
Little Jacks Cr. (L]), and one from a montane climate
stream Keithley Cr. (K), both located in Idaho, USA. In
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order to create F1 crosses, gametes from each strain
were cross fertilized and reared in laboratory incuba-
tors. Fls were included to investigate additive genetic
variation associated with response to heat stress. The
two sites were chosen for study based on previous tests
of redband trout from six desert and six montane streams
that demonstrated that Little Jacks Cr. fish were adap-
ted to a desert climate and Keithley Cr. was a typical
montane stream population [13]. Gametes were fertil-
ized to produce half-sibling progeny representing three
distinct strains: one of pure desert strain (LJ), one of

pure montane strain (K), and the F1 crosses (L] males x
K females). Fry were reared in constant 15°C spring
water until they reached an average weight of 2 g, then
each strain was divided into treatment and control groups.
Three replicate tanks were used for all treatment and con-
trol groups for each strain (3 strains x 2 treatments x 3
replicates equals a total of 18 tanks) with an average of 45
fish per tank. Fish were fed a diet of Soft Moist pellets
(Rangen Inc.) to satiation twice per day, and photoperiod
was fixed at 14 h light and 10 h darkness. Fish in recir-
culating treatment tanks experienced diel temperature
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Figure 5 (See legend on next page.)




Narum and Campbell BMC Genomics (2015) 16:103

Page 10 of 12

(See figure on previous page.)

Figure 5 Gene ontology (GO) annotation for transcripts that were strongly differentiated expressed in each strain (>4 fold change and
FDR < 0.05). Results shown for level 2 categories for a) Biological process (“org.” = organization); b) Molecular function (“TFA”" = transcription factor
activity); €) Cellular component. Bars are color coded to represent fish by their environment: desert strain (red; LJ = Little Jacks Cr.), F1 crosses

(gray; LIxK), montane strain (blue; K= Keithley Cr.).

cycles over 6 weeks that reached a maximum of 28.5°C in
the afternoon and a minimum of 17.0°C at night (mean
temperature gradient of ~1.5°C per hour; Additional file 7:
Figure S1, Supporting information), while fish in control
tanks were held at a constant temperature of 15°C spring
water. All experimental protocols were approved in ad-
vance by the University of Idaho’s Institutional Animal
Care and Use Committee (Protocol #201025).

RNA-seq library prep and lllumina sequencing

Total RNA was isolated from approximately 5 mg of gill
tissue from individual fish using Qiagen RNeasy Kkits.
RNA was normalized to 100 ng/pL and equal volumes
of RNA from three fish from each tank were pooled for
a total of 72 libraries (18 tanks x 4 time periods each;
Table 1). The Ribo-Zero™ Magnetic Gold Kit (Epicentre)
was used to deplete the samples of ribosomal RNA
(rRNA) which constitutes a large proportion of the total
RNA. Ribosomal RNA depleted samples were purified
using the ethanol precipitation method suggested in
the Ribo-Zero Kit protocol and resuspended in 20 pL
of RNAse free water. RNA-seq libraries were prepared
using 4.75 pL of template material using the strand-
specific library preparation kit ScriptSeq™ v2 RNA-Seq
Kit (Epicentre, Madison WI USA). The tagged cDNA
constructs were purified using Qiagen MinElute columns
and sample specific index sequences were added during
PCR [95°C — 1 m; (95°C — 30s; 55°C — 30s; 68°C — 3 m) x
15; 68°C — 7 m; 4°C — hold] using ScriptSeq (Epicentre)
index PCR primers. Each amplified library was then
purified using Agencourt AMPure XP magnetic beads
and eluted with 20uL. of nuclease free water. Dilutions
(1:2000) of the purified and indexed libraries were then
quantified by qPCR using a ABI-7900 instrument (Life
Technologies), Power-Sybr master mix (Life Technologies),
standard Illumina (P5, P7) primers and an Illumina PhiX
library as a standard. The indexed libraries were normal-
ized to 10 nM concentration in Tris-EDTA (pH 8.0) buffer
with 0.1% Tween-20 and combined for sequencing (8
pooled libraries with nine samples, each with ScriptSeq
index sequences 1-9). Each of the pooled libraries was se-
quenced in two lanes of a single read 100 bp flow cell on
an Illumina HiSeq 1500 instrument for a total of 16 lanes.
Each lane of data was demultiplexed by index sequence
and reads were combined from both lanes for each sample.
The average number of reads per sample after quality fil-
tering was 31.96 M and ranged from 22.40 — 72.70 M. Raw

data was submitted to NCBI's short read archive (SRA;
entry GSE53907).

Sequence alignment to reference transcriptome

Raw sequencing data was aligned to a reference tran-
scriptome for rainbow trout designed for stress response
[21] using the program Bowtie [42]. Parameters for Bowtie
were set to exclude the first 10 bases and last 30 bases of
sequencing data leaving 60 bases of high quality sequence
for alignment. Both the forward (+) and reverse comple-
ment (-) of each reference transcript were considered for
alignment since the reference transcriptome was assem-
bled from non-directional sequence data. The best single
match to the reference transcriptome was returned pro-
vided it had no more than 3 mismatches across the 60
bases (95% identical).

Output data from Bowtie was condensed by counting
matches to each of the reference transcript contigs for
both + and - orientation. Since the library preparation pro-
cess generates directional constructs (strand-specific li-
brary preparation), we expected legitimate alignments
to match only one of the two orientations of each refer-
ence transcript. Indeed, we found that our library reads
predominantly matched only 1 of the 2 strand orienta-
tions (>90% of reads). Therefore, read alignments to the
minor strand were considered mis-assigned and ex-
cluded from the data set. Finally, since the reference
transcriptome included several sequence variants (con-
tigs) for many putative genes, combined read counts
from contigs within each gene were utilized for differ-
ential expression analyses.

Differential expression analyses

Tests for differential expression were completed using
the edgeR Bioconductor package [43]. Differential expres-
sion analyses were done to test for two processes involved
in heat stress response: 1) acclimatization to chronic heat
stress over time, and 2) evolutionary adaptation of the
specific strains. To test for acclimatization, differential ex-
pression was tested separately for each time period (Day 1,
3, 7, 28) with all strains in the model. To test for evolu-
tionary adaptation, differential expression was tested sep-
arately for each strain (LJ, K, LJxK) with all time periods
in the model. Each model included the additional factor of
condition (treatment or control) and three biological repli-
cates. Genes that were not expressed in either condition
were removed; specifically only genes with at least two
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counts per million reads in at least nine samples were kept
for further analyses. Gene counts were normalized with
the trimmed mean of ‘M’ values (TMM) method in edgeR
as this has been shown to be one of the most reliable
methods for this purpose in RNA-seq studies [44]. Sample
metadata and normalized gene expression data was sub-
mitted to NCBI's Gene Expression Omnibus (GEO; entry
GSE53907). As suggested by McCarthy et al. [45], gene-
wise dispersion and a general linear model (GLM) were
used for tests of differential expression. Genewise disper-
sion estimates deprioritize genes with inconsistent results
and allow the main analysis to focus on changes that are
consistent between biological replicates. The GLM accounts
for the multifactor design of this study. A false discovery
rate (FDR at 0.05; [46]) was applied to account for multiple
tests of differentially expressed genes. In order to validate
patterns of gene expression in the RNA-seq data, results
were compared to quantitative PCR (qPCR) data for mul-
tiple heat shock genes with Sybr Green on an ABI 3730
instrument as detailed in Narum et al. [14]. Significantly re-
gulated contigs in each strain were annotated in Blast2GO
with a blastx minimum e-value set to 1.0E-06 [47].

Availability of supporting data

Raw data was submitted to NCBI’s short read archive
(SRA; entry GSE53907). Sample metadata and normalized
gene expression data was submitted to NCBI's Gene
Expression Omnibus (GEO; entry GSE53907).

Additional files

Additional file 1: Table S1. Complete list of genes for Little Jacks Cr.
redband trout and subsets of significant genes at differing levels of
statistical significance (FDR < 0.05; > 4 fold change and FDR < 0.05).
Gene identification number is provided from the reference transcriptome
[18], FC = fold change, CPM = counts per million, LR = likelihood ratio,
FDR = false discovery rate.

Additional file 2: Table S2. Complete list of genes for F1 crosses of
redband trout (Little Jacks Cr. x Keithley Cr) and subsets of significant
genes at differing levels of statistical significance (FDR < 0.05; > 4 fold
change and FDR < 0.05). Gene identification number is provided from
the reference transcriptome [18], FC = fold change, CPM = counts per
million, LR = likelihood ratio, FDR = false discovery rate.

Additional file 3: Table S3. Complete list of genes for Keithley Cr.
redband trout and subsets of significant genes at differing levels of
statistical significance (FDR < 0.05; > 4 fold change and FDR < 0.05).
Gene identification number is provided from the reference transcriptome
[18], FC = fold change, CPM = counts per million, LR = likelihood ratio,
FDR = false discovery rate.

Additional file 4: Table S4. Annotated genes for Little Jacks Cr.
redband trout that were strongly differentially expressed (>4 fold change
and FDR < 0.05). SegName is the gene identification number from the
reference transcriptome [18], and GO-Groups are abbreviated as

P — Process, F — Function, C — Cellular.

Additional file 5: Table S5. Annotated genes for F1 crosses of redband
trout (Little Jacks Cr. x Keithley Cr.) that were strongly differentially
expressed (>4 fold change and FDR < 0.05). SeqName is the gene
identification number from the reference transcriptome [18], and
GO-Groups are abbreviated as P — Process, F — Function, C — Cellular.
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Additional file 6: Table S6. Annotated genes for Keithley Cr. redband
trout that were strongly differentially expressed (>4 fold change and
FDR < 0.05). SegName is the gene identification number from the
reference transcriptome [18], and GO-Groups are abbreviated as

P — Process, F — Function, C - Cellular.

Additional file 7: Figure S1. Gene expression patterns of heat shock
genes as estimated by RNA-seq and gPCR methods for a) hsp70,
b) hsp47, and ¢) hsp 90.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

NRC participated in study planning, tissue sampling, molecular data
collection, bioinformatics, and assisted drafting the ms. SRN designed the
study, collected field and tissue samples, coordinated molecular data,
completed statistical analyses, and drafted the ms. Both authors have read
and approved the final manuscript.

Acknowledgements

We thank Kevin Meyer, Steve Elle, Liz Mamer, Chris Sullivan, Carson Watkins
for assistance with field sampling, Lindsay Maier, Mike Casten, Ron Hardy for
experimental design and fish rearing, Stephanie Harmon for assistance in the
lab, and Mike Miller for sequencing pipeline suggestions. Funding was
provided by the Bonneville Power Administration through grant 200900500 to
SRN. All experimental protocols were approved in advance by the University of
|daho's Institutional Animal Care and Use Committee (Protocol #201025).

Received: 27 January 2014 Accepted: 15 January 2015
Published online: 21 February 2015

References

1.

2.

Angilleta MJ. Thermal Adaptation: a Theoretical and Empirical Synthesis.
Oxford: Oxford University Press; 2009.

Whitehead A, Galvez F, Zhang S, Williams LM, Oleksiak MF. Functional
genomics of physiological plasticity and local adaptation in killifish. J Hered.
2011;102:499-511.

Dahlhoff EP, Rank NE. Functional and physiological consequences of
genetic variation at phosphoglucose isomerase: Heat shock protein
expression is related to enzyme genotype in a montane beetle. Proc Natl
Acad Sci. 2000,97:10056-61.

Hoffman AA, Sorensen JG, Loeschcke V. Adaptation of Drosophila to
temperature extremes: bringing together quantitative and molecular
approaches. J Therm Biol. 2003;28:175-216.

Kavanagh KD, Haugen TO, Gregersen F, Jernvall J, Vollestad LA.
Contemporary temperature-driven divergence in a Nordic freshwater fish
under conditions commonly thought to hinder adaptation. BMC Evol Biol.
2010;10:350.

Keller I, Seehausen O. Thermal adaptation and ecological speciation.

Mol Ecol. 2012,21:782-99.

Wolf JBW. Principles of transcriptome analysis and gene expression
quantification: an RNA-seq tutorial. Mol Ecol Res. 2013;13:559-72.
Morimoto RI, Sarge KD, Abravaya K. Transcriptional regulation of heat shock
genes. J Biol Chem. 1992,267:21987-90.

Serensen JG, Kristensen TN, Loeschcke V. The evolutionary and ecological
role of heat shock proteins. Ecol Lett. 2003;6:1025-37.

Serensen JG, Dahlgaard J, Loeschcke V. Genetic variation in thermal
tolerance among natural populations of Drosophila buzzatii: down
regulation of Hsp70 expression and variation in heat stress resistance traits.
Funct Ecol. 2001;15:289-96.

Serensen JG, Norry FM, Scannapieco AC, Loeschcke V. Altitudinal variation
for stress resistance traits and thermal adaptation in adult Drosophila
buzzatii from the New World. J Evol Biol. 2005;18:829-37.

Kassahn KS, Crozier RH, Ward AC, Stone G, Caley MJ. From transcriptome to
biological function: environmental stress in an ectothermic vertebrate, the
coral reef fish Pomacentrus moluccensis. BMC Genomics. 2007;8:358.

Narum SR, Campbell NR, Kozfkay CC, Meyer KA. Adaptation of redband
trout in desert and montane environments. Mol Ecol. 2010;19:4622-37.


http://www.biomedcentral.com/content/supplementary/s12864-015-1246-5-s1.xlsx
http://www.biomedcentral.com/content/supplementary/s12864-015-1246-5-s2.xlsx
http://www.biomedcentral.com/content/supplementary/s12864-015-1246-5-s3.xlsx
http://www.biomedcentral.com/content/supplementary/s12864-015-1246-5-s4.xlsx
http://www.biomedcentral.com/content/supplementary/s12864-015-1246-5-s5.xlsx
http://www.biomedcentral.com/content/supplementary/s12864-015-1246-5-s6.xlsx
http://www.biomedcentral.com/content/supplementary/s12864-015-1246-5-s7.pdf

Narum and Campbell BMC Genomics (2015) 16:103

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Narum SR, Campbell NR, Meyer KA, Miller MR, Hardy RW. Thermal 38.
adaptation and acclimation of ectotherms from differing aquatic climates.

Mol Ecol. 2013;22:3090-9097.

Portner HO, Knust R. Climate change affects marine fishes through the 39.
oxygen limitation of thermal tolerance. Science. 2007;315:95-7.

Gamperl AK, Rodnick KJ, Faust HA, Venn EC, Bennett MT, Crawshaw LI, et al.
Metabolism, swimming performance, and tissue biochemistry of high desert
redband trout (Oncorhynchus mykiss ssp.): evidence for phenotypic
differences in physiological function. Physiol Biochem Zool. 2002;75:413-31. 41.
Rodnick KJ, Gamperl AK; Lizars KR, Bennett MT, Rausch RN, Keeley ER.
Thermal tolerance and metabolic physiology among redband trout
populations in south-eastern Oregon. J Fish Biol. 2004,64:310-35.

Hornett EA, Wheat CW. Quantitative RNA-seq analysis in non-model species:
assessing transcriptome assemblies as a scaffold and the utility of evolutionary
divergent genomic reference species. BMC Genomics. 2012;13:361. 43.
De Woody JA, Abts KC, Fahey AL, Ji Y, Kimble SJA, Marra NJ, et al. Of contig
and quagmires: next-generation sequencing pitfalls associated with
transcriptomic studies. Mol Ecol Res. 2013;13:551-8.

Singal S. De novo transcriptomic analyses for non-model organisms: an
evaluation of m ethods across a multi-species data set. Mol Ecol Res.
2013;13:403-16.

Sénchez CC, Weber GM, Gao G, Cleveland BM, Yao J, Rexroad CR. 45.
Generation of a reference transcriptome for evaluating rainbow trout
responses to various stressors. BMC Genomics. 2011;12:626.

Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, et al.
Differences in thermal tolerance among sockeye salmon populations.
Science. 2011;332:109-12.

Portner HO. Climate variations and the physiological basis of temperature
dependent biogeography: systemic to molecular hierarchy of thermal
tolerance in animals. Comp Biochem Physiol. 2002;132A:739-61.

Farrell AP. Environment, antecedants and climate change: lessons from the
study of temperature physiology and river migration of salmonids.

J Exp Biol. 2009;212:3771-80.

Cassinelli JD, Moffitt CM. Comparison of growth and stress in resident
redband trout held in laboratory simulations of montane and desert
summer temperature cycles. Trans Am Fish Soc. 2010;139:339-52.

Somero GN. The physiology of climate change: how potentials for
acclimatization and genetic adaptation will determine “winners” and
“losers.". J Exp Biol. 2010;213:912-20.

Fangue NA, Nann AF, Hofmeister M, Schulte PM. Intraspecific variation in
thermal tolerance and heat shock protein gene expression in common
killifish, Fundulus heteroclitus. J Exp Biol. 2006;209:2859-72.

Dong Y, Somero GN. Temperature adaptation of cytosolic malate
dehydrogenases of limpets (genus Lottia): differences in stability and
function due to minor changes in sequence correlate with biogeographic
and vertical distributions. J Exp Biol. 2008,212:169-77.

Miller KM, Li S, Kaukinen KH, Ginther N, Hammill E, Curtis JMR, et al.
Genomic signatures predict migration and spawning failure in wild
Canadian salmon. Science. 2011;331:214-7.

Fausch KD, Torgersen CE, Baxter CV, Li HW. Landscapes to riverscapes:
bridging the gap between research and conservation of stream fishes.
Bioscience. 2002;52:483-98.

Ficke AD, Myrick CA, Hansen LJ. Potential impacts of global climate change
of freshwater fisheries. Rev Fish Biol Fisher. 2007;17:581-613.

Gustafson RG, Waples RS, Myers JM, Weitkamp LA, Bryant GJ, Johnson OW,

40.

42.

44,

46.

47.

Page 12 of 12

Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-
by-sequencing in ecological and conservation genomics. Mol Ecol.
2013,22:2841-7.

Hoffmann AA, Sgro CM. Climate change and evolutionary adaptation.
Nature. 2011;470:479-85.

Portner HO. Oxygen- and capacity-limitation of thermal tolerance: a matrix
for integrating climate-related stressor effects in marine ecosystems.

J Exp Biol. 2010;,213:881-93.

Pandey RV, Franssen SU, Futschik A, Schlotterer C. Allelic imbalance metre
(Allim), a new tool for measuring allele-specific gene expression with
RNA-seq data. Mol Ecol Res. 2013;13:740-5.

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol.
2009;10:R25.

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26:139-40.

Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N,
et al. A comprehensive evaluation of normalization methods for lllumina
high-throughput RNA sequencing data analysis. Brief Bioinform.
2012;10:1093.

McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of
multifactor RNA-Seq experiments with respect to biological variation.
Nucleic Acids Res. 2012,40:4288-97.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289-300.
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a
universal tool for annotation, visualization and analysis in functional genomics
research. Bioinformatics. 2005;21:3674-6.

et al. Pacific salmon extinctions: quantifying lost and remaining diversity. Ve
Conserv Biol. 2007;21:1009-20.

Perry AL, Low PJ, Ellis JR, Reynolds JD. Climate change and distribution
shifts in marine fishes. Science. 2005;308:1912-5.

Wenger SJ, Isaak DJ, Luce C, Neville HM, Fausch KD, Dunham JB, et al. Flow
regime, temperture, and biotic interactions drive differential declines of
trout species under climate change. Proc Nat Acad Sci. 2011;108:14175-80.
Isaak DJ, Rieman BE. Stream isotherm shifts from climate change and
implications for distributions of ectothermic organisms. Glob Change Biol.
2013;19:742-51.

Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of
conservation genetics. Nat Rev. 2010;11:697-709.

Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, et al. What is
conservation physiology? Perspectives on an increasingly integrated and
essential science. Conserv Physiol. 2013;1:1-23.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Sequence alignment to reference transcriptome
	Differential expression

	Discussion
	Conclusions
	Methods
	Redband trout populations and thermal stress experiments
	RNA-seq library prep and Illumina sequencing
	Sequence alignment to reference transcriptome
	Differential expression analyses
	Availability of supporting data

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

