231 research outputs found

    Dynamics of two-dimensional flow around a circular cylinder with flexible filaments attached

    Get PDF
    A direction adaptive approach for the reduction of drag and the suppression of lift fluctuation in flow passing a circular cylinder is developed. Flexible filaments are attached to the surface of the cylinder, and different configurations, including the number, lengths, and angles of attachment of the filaments, as well as their tension and bending features, are investigated. In this comprehensive numerical study, the configuration with two filaments 180o apart is found to be optimal for drag reduction and lift fluctuation suppression and is adaptive to the direction of the incoming flow. A drag reduction of 10.8% and a lift fluctuation suppression of 34.6% can be achieved as one filament is attached to the rear stagnation point and the other to the front stagnation point. The hairy coating resembled by 12 evenly attached filaments is also considered. Though marked drag reduction has not been found for this configuration, we leave it an open question for future studies to explore various properties of the filaments in turbulent flow, whose interaction with the filaments would be significant

    Piperazine Enhancing Sulfuric Acid-Based New Particle Formation : Implications for the Atmospheric Fate of Piperazine

    Get PDF
    Piperazine (PZ), a cyclic diamine, is one of 160 detected atmospheric amines and an alternative solvent to the widely used monoethanolamine in post-combustion CO2 capture. Participating in H2SO4 (sulfuric acid, SA)-based new particle formation (NPF) could be an important removal pathway for PZ. Here, we employed quantum chemical calculations and kinetics modeling to evaluate the enhancing potential of PZ on SA-based NPF by examining the formation of PZ-SA clusters. The results indicate that PZ behaves more like a monoamine in stabilizing SA and can enhance SA-based NPF at the parts per trillion (ppt) level. The enhancing potential of PZ is less than that of the chainlike diamine putrescine and greater than that of dimethylamine, which is one of the strongest enhancing agents confirmed by ambient observations and experiments. After the initial formation of the (PZ)1(SA)1 cluster, the cluster mainly grows by gradual addition of SA or PZ monomer, followed by addition of (PZ)1(SA)1 cluster. We find that the ratio of PZ removal by NPF to that by the combination of NPF and oxidations is 0.5–0.97 at 278.15 K. As a result, we conclude that participation in the NPF pathway could significantly alter the environmental impact of PZ compared to only considering oxidation pathways.Peer reviewe

    U-shaped fairings suppress vortex-induced vibrations for cylinders in cross-flow

    Get PDF
    We employ three-dimensional direct and large-eddy numerical simulations of the vibrations and flow past cylinders fitted with free-to-rotate U-shaped fairings placed in a cross-flow at Reynolds number 100 ⩽ Re ⩽ 10,000. Such fairings are nearly neutrally buoyant devices fitted along the axis of long circular risers to suppress vortex-induced vibrations (VIVs). We consider three different geometric configurations: a homogeneous fairing, and two configurations (denoted A and AB) involving a gap between adjacent segments. For the latter two cases, we investigate the effect of the gap on the hydrodynamic force coefficients and the translational and rotational motions of the system. For all configurations, as the Reynolds number increases beyond 500, both the lift and drag coefficients decrease. Compared to a plain cylinder, a homogeneous fairing system (no gaps) can help reduce the drag force coefficient by 15 % for reduced velocity U* = 4.65, while a type A gap system can reduce the drag force coefficient by almost 50 % for reduced velocity U* = 3.5, 4.65, 6, and, correspondingly, the vibration response of the combined system, as well as the fairing rotation amplitude, are substantially reduced. For a homogeneous fairing, the cross-flow amplitude is reduced by about 80 %, whereas for fairings with a gap longer than half a cylinder diameter, VIVs are completely eliminated, resulting in additional reduction in the drag coefficient. We have related such VIV suppression or elimination to the features of the wake flow structure. We find that a gap causes the generation of strong streamwise vorticity in the gap region that interferes destructively with the vorticity generated by the fairings, hence disorganizing the formation of coherent spanwise cortical patterns. We provide visualization of the incoherent wake flow that leads to total elimination of the vibration and rotation of the fairing–cylinder system. Finally, we investigate the effect of the friction coefficient between cylinder and fairing. The effect overall is small, even when the friction coefficients of adjacent segments are different. In some cases the equilibrium positions of the fairings are rotated by a small angle on either side of the centreline, in a symmetry-breaking bifurcation, which depends strongly on Reynolds number

    U-shaped fairings suppress vortex-induced vibrations for cylinders in cross-flow

    Get PDF
    We employ three-dimensional direct and large-eddy numerical simulations of the vibrations and flow past cylinders fitted with free-to-rotate U-shaped fairings placed in a cross-flow at Reynolds number 100 ⩽ Re ⩽ 10,000. Such fairings are nearly neutrally buoyant devices fitted along the axis of long circular risers to suppress vortex-induced vibrations (VIVs). We consider three different geometric configurations: a homogeneous fairing, and two configurations (denoted A and AB) involving a gap between adjacent segments. For the latter two cases, we investigate the effect of the gap on the hydrodynamic force coefficients and the translational and rotational motions of the system. For all configurations, as the Reynolds number increases beyond 500, both the lift and drag coefficients decrease. Compared to a plain cylinder, a homogeneous fairing system (no gaps) can help reduce the drag force coefficient by 15 % for reduced velocity U* = 4.65, while a type A gap system can reduce the drag force coefficient by almost 50 % for reduced velocity U* = 3.5, 4.65, 6, and, correspondingly, the vibration response of the combined system, as well as the fairing rotation amplitude, are substantially reduced. For a homogeneous fairing, the cross-flow amplitude is reduced by about 80 %, whereas for fairings with a gap longer than half a cylinder diameter, VIVs are completely eliminated, resulting in additional reduction in the drag coefficient. We have related such VIV suppression or elimination to the features of the wake flow structure. We find that a gap causes the generation of strong streamwise vorticity in the gap region that interferes destructively with the vorticity generated by the fairings, hence disorganizing the formation of coherent spanwise cortical patterns. We provide visualization of the incoherent wake flow that leads to total elimination of the vibration and rotation of the fairing–cylinder system. Finally, we investigate the effect of the friction coefficient between cylinder and fairing. The effect overall is small, even when the friction coefficients of adjacent segments are different. In some cases the equilibrium positions of the fairings are rotated by a small angle on either side of the centreline, in a symmetry-breaking bifurcation, which depends strongly on Reynolds number

    ASTF: Visual Abstractions of Time-Varying Patterns in Radio Signals

    Full text link
    A time-frequency diagram is a commonly used visualization for observing the time-frequency distribution of radio signals and analyzing their time-varying patterns of communication states in radio monitoring and management. While it excels when performing short-term signal analyses, it becomes inadaptable for long-term signal analyses because it cannot adequately depict signal time-varying patterns in a large time span on a space-limited screen. This research thus presents an abstract signal time-frequency (ASTF) diagram to address this problem. In the diagram design, a visual abstraction method is proposed to visually encode signal communication state changes in time slices. A time segmentation algorithm is proposed to divide a large time span into time slices.Three new quantified metrics and a loss function are defined to ensure the preservation of important time-varying information in the time segmentation. An algorithm performance experiment and a user study are conducted to evaluate the effectiveness of the diagram for long-term signal analyses.Comment: 11 pages, 9 figure

    A Novel Cyberspace-Oriented Access Control Model

    Get PDF
    With the developments of mobile communication, networks and information technology, many new information service patterns and dissemination modes emerge with some security and privacy threats in access control, i.e., the ownership of data is separated from the administration of them, secondary/mutiple information distribution etc. Existing access control models, which are always proposed for some specific scenarios, are hardly to achieve fine-grained and adaptive access control. In this paper, we propose a novel Cyberspace-oriented Access Control model, termed as CoAC, which avoids the aforementioned threats by comprehensively considering some vital factors, such as the access requesting entity, general tense, access point, resource, device, networks, internet-based interactive graph and chain of resource transmission. By appropriately adjusting these factors, CoAC covers most of typical access control models and fulfills the requirements of new information service patterns and dissemination modes. We also present the administrative model of our proposed CoAC model and formally describe the administrative functions and methods used in the administrative model by utilizing Z-notation. Our CoAC is flexible and scalable, it can be further refined and expanded to figure out new opportunities and challenges in the upcoming access control techniques

    Reciprocal facilitation between annual plants and burrowing crabs:Implications for the restoration of degraded saltmarshes

    Get PDF
    Increasing evidence shows that facilitative interactions between species play an essential role in coastal wetland ecosystems. However, there is a lack of understanding of how such interactions can be used for restoration purposes in saltmarsh ecosystems. We therefore studied the mechanisms of reciprocal facilitative interactions between native annual plants, Suaeda salsa, and burrowing crabs, Helice tientsinensis, in a middle-elevation saltmarsh (with generally high plant density and moderate tides) in the Yellow River Delta of China. We investigated the relationship between the densities of the plants and crab burrows in different seasons. Then, we tested whether and how saltmarsh plants and crabs indeed facilitate each other in a series of field and laboratory experiments. Finally, we applied the results by creating a field-scale artificial approach for microtopographic modification to restore a degraded saltmarsh. We found that the density of plant seedlings in spring was positively correlated with the density of crab burrows in the previous autumn; moreover, the density of crab burrows was correlated with the density of plants in summer. The concave-convex surface microtopography created by crabs promoted seed retention and seedling establishment of saltmarsh plants in winter and spring. These plants in turn facilitated crabs by inhibiting predators, providing food and reducing physical stresses for crabs in summer and autumn. The experimental removal of saltmarsh plants decreased crab burrow density, while both transplanting and simulating plants in bare patches promoted crabs. The microtopographic modification, inspired by our new understanding of the interactions between saltmarsh plants and crabs, showed that these degraded saltmarsh ecosystems can be restored by a single ploughing intervention. Synthesis. Our results suggest a reciprocal facilitation between annual plants and burrowing crabs in a middle-elevation saltmarsh ecosystem. This knowledge yielded new restoration options for degraded coastal saltmarshes through the one-time ploughing initiation of microtopographic variation, which could promote the re-establishment of ecosystem engineers and lead to the efficient recovery of pioneer coastal vegetation and associated fauna

    Critical Role of Iodous Acid in Neutral Iodine Oxoacid Nucleation

    Get PDF
    Nucleation of neutral iodine particles has recently been found to involve both iodic acid (HIO3) and iodous acid (HIO2). However, the precise role of HIO2 in iodine oxoacid nucleation remains unclear. Herein, we probe such a role by investigating the cluster formation mechanisms and kinetics of (HIO3)m(HIO2)n (m = 0-4, n = 0-4) clusters with quantum chemical calculations and atmospheric cluster dynamics modeling. When compared with HIO3, we find that HIO2 binds more strongly with HIO3 and also more strongly with HIO2. After accounting for ambient vapor concentrations, the fastest nucleation rate is predicted for mixed HIO3-HIO2 clusters rather than for pure HIO3 or HIO2 ones. Our calculations reveal that the strong binding results from HIO2 exhibiting a base behavior (accepting a proton from HIO3) and forming stronger halogen bonds. Moreover, the binding energies of (HIO3)m(HIO2)n clusters show a far more tolerant choice of growth paths when compared with the strict stoichiometry required for sulfuric acid-base nucleation. Our predicted cluster formation rates and dimer concentrations are acceptably consistent with those measured by the Cosmic Leaving Outdoor Droplets (CLOUD) experiment. This study suggests that HIO2 could facilitate the nucleation of other acids beyond HIO3 in regions where base vapors such as ammonia or amines are scarce.Peer reviewe
    • …
    corecore