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ABSTRACT: Piperazine (PZ), a cyclic diamine, is one of 160 detected atmospheric 14 

amines and an alternative solvent to the widely used monoethanolamine in post-15 

combustion CO2 capture. Participating in H2SO4 (SA)-based new particle formation 16 

(NPF) could be an important removal pathway for PZ. Here, we employed quantum 17 

chemical calculations and kinetics modeling to evaluate the enhancing potential of PZ 18 

on SA-based NPF by examining the formation of PZ–SA clusters. The results indicate 19 

that PZ behaves more like a monoamine in stabilizing SA and can enhance SA-based 20 

NPF at the parts per trillion (ppt) level. The enhancing potential of PZ is less than that 21 
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of the chainlike diamine putrescine, and greater than that of dimethylamine which is 22 

one of the strongest enhancing agents confirmed by ambient observations and 23 

experiments. After the initial formation of the (PZ)1(SA)1 cluster, the cluster mainly 24 

grows by gradual addition of SA or PZ monomer, followed by addition of (PZ)1(SA)1 25 

cluster. We find that the ratio of PZ removal by NPF to that by the combination of NPF 26 

and oxidations is 0.5-0.97 at 278.15 K. As a result, the participation in the NPF pathway 27 

could significantly alter the environmental impact of PZ compared to only considering 28 

oxidation pathways. 29 

INTRODUCTION 30 

Amines are a class of atmospheric nitrogen-containing organic pollutants. Up to 31 

now, about 160 different amines have been detected in the atmosphere.1 Amines are 32 

emitted into the atmosphere from both natural and anthropogenic sources including 33 

agriculture, biomass burning, animal husbandry, oceans, cooking, smoking and various 34 

industrial processes.1-12 It deserves mentioning that CO2 capture units will become a 35 

significant source of amines once the promising amine-based CO2 capture technology 36 

is implemented on a large scale.13-15 In recent years, the concern about the fate of amines 37 

has been increasing since the transformation of amines could potentially form 38 

carcinogenic nitrosamines.1 39 

Several studies have addressed the removal of amines by atmospheric oxidation.16-40 

39 The oxidation by hydroxyl radicals (·OH) has been considered to be their main 41 

transformation pathway, followed by chlorine radicals (·Cl), at daytime.18,32 The 42 

reactions with ·OH and ·Cl lead to amines having an atmospheric lifetime on the order 43 

of hours.1,13,17-19,22-28,32 More importantly, the atmospheric oxidation by ·OH and ·Cl 44 

can lead to the formation of N-center radicals, which can further react with NOx (x = 1, 45 

2) to form hazardous nitrosamines/nitramine (Scheme 1), increasing the environmental 46 



risk of the amines emissions.17,18,28,30,32 Although the direct reaction of amines with NOx 47 

can also lead to the formation of nitrosamines, several studies have shown that it is of 48 

little importance under atmospheric condition.13,40,41 Besides oxidation reactions, many 49 

studies have found that amines such as monomethylamine (MA), dimethylamine 50 

(DMA), trimethylamine (TMA) and monoethanolamine (MEA) can significantly 51 

enhance H2SO4 (SA)-based new particle formation (NPF) via acid-base reactions, an 52 

important process for the formation of atmospheric aerosol particles.42-72 However, 53 

there are few studies concerning how the participation of amines in SA-based NPF 54 

competes with their oxidation pathways and thereby affects the fate of atmospheric 55 

amines. Our recent study indicated that the participation in SA-based NPF is an 56 

important sink for MEA, and it could even be comparable to the oxidation reaction 57 

pathway initiated by ·OH at 278.15 K.70 This implies that the participation in NPF could 58 

be a significant pathway in determining the fate of other amines, especially those with 59 

high enhancing potential for SA-based NPF. 60 

 61 

Scheme 1. Major reaction pathways for ·OH/·Cl initiated reactions of amines. Here 62 

exemplified using methylamine. 63 

Piperazine (PZ), a cyclic secondary diamine, whose aqueous solution is considered 64 

an alternative solvent to MEA, a benchmark and widely used solvent in post-65 

combustion CO2 capture (PCCC) technology.73,74 Once PZ-based PCCC technology is 66 

implemented on a large scale, quantities of PZ might be released into the atmosphere 67 

from PCCC units due to its relatively high vapor pressure.75 PZ has previously been 68 

identified as one of the 160 amines detected in the ambient atmosphere.1 In Zonguldak 69 



province, Turkey, the concentration of PZ was found to reach about 4 parts per trillion 70 

(ppt), which is higher than that of DMA (about 1 ppt) at the same location.76 Our recent 71 

study showed that the daytime atmospheric oxidation of PZ initiated by ·OH and ·Cl 72 

can lead to higher yield of carcinogenic nitrosamines compared to the corresponding 73 

oxidation process of MEA, implying higher environmental risk related to PZ than MEA 74 

emissions.32 Similar to MEA,70 the participation of PZ in SA-based NPF via acid-base 75 

reactions could be a significant pathway to compete with its oxidation pathways. 76 

However, to the best of our knowledge, there are currently no studies that address the 77 

participation of PZ in SA-based NPF. 78 

The gas phase basicity (GB) of amines has been suggested to be an important 79 

parameter in determining their enhancing potential on SA-based NPF.53,54 The GB 80 

value of PZ (914.7 kJ mol-1) is significantly higher than those of previously studied 81 

monoamines and ammonia (MA 864.5, DMA 896.5, MEA 896.8, NH3 819.0 kJ mol-82 

1).77 Therefore, based purely on the GB, PZ should have much higher enhancing 83 

potential on SA-based NPF than NH3, MA, DMA and MEA under the assumption that 84 

they have similar atmospheric concentration. In addition, the steric effect of the –NH– 85 

group in the cyclic PZ should be different from previously studied chainlike 86 

amines,56,70,78 which could influence its enhancing potential. At last, if the two –NH– 87 

groups of PZ can synergistically interact with SA like chainlike diamine putrescine 88 

(PUT), PZ could have much higher enhancing potential than what is expected by its 89 

GB. However, due to its rigid cyclic structure, it is not easy to judge whether the two –90 

NH– groups of PZ can synergistically interact with SA. All in all, it is difficult to 91 

estimate the enhancing potential of PZ on SA-based NPF based on chemistry intuition. 92 

In addition, no previous studies have investigated the potential role of cyclic diamines 93 

in SA-based NPF. Thus, to comprehensively understand the atmospheric fate of PZ and 94 



expand the knowledge of amines enhancing SA-based NPF, it is indispensable to 95 

investigate the participation of PZ in SA-based NPF.  96 

Here, we investigated the initial step of PZ participating in SA-based NPF by 97 

examining the formation of (PZ)x(SA)y (x = 0−4, y = 0−4) clusters by a combined 98 

method using quantum chemical calculations with the Atmospheric Cluster Dynamics 99 

Code (ACDC)79-82. The results are compared with previous studies on the DMA−SA, 100 

MEA−SA and PUT−SA systems. In addition, the effect of adding water molecules to 101 

the clusters was also considered to study the effect of hydration on the cluster formation 102 

kinetics of PZ and SA molecules.  103 

COMPUTATIONAL DETAILS 104 

Configurational Sampling and Electronic Structure Calculations. Obtaining a good 105 

estimate of the global free energy cluster structures remains a large challenge in 106 

modelling atmospheric NPF. Here, we employed a multi-step sampling scheme to 107 

search for the global minima of the (PZ)x(SA)y (x = 0−4, y = 1−4) clusters. The pure 108 

(SA)1−4 clusters were taken from previous work.81 The multi-step sampling scheme has 109 

extensively been applied to study atmospheric cluster formation.70,78,83-88 In brief, the 110 

scheme includes the following six steps: (1) Large number of initial cluster 111 

configurations (about 10000 for most of clusters) are randomly generated; (2) All the 112 

configurations are initially optimized using the semiempirical PM6 method; (3) Single 113 

point energy calculations at the wB97X-D/6-31+G(d) level of theory is performed on 114 

all the optimized configurations; (4) The identified lowest energy configurations within 115 

10-15 kcal mol-1 are fully optimized at the wB97X-D/6-31++G(d,p) level of theory, 116 

followed by a vibrational frequency calculation; (5) For the identified lowest free 117 

energy configurations (within 1-2 kcal mol-1 of the global minimum), the single point 118 

energy was refined with a DLPNO-CCSD(T)/aug-cc-pVTZ calculation; (6) Several of 119 



the lowest free energy configurations (about 10 for most of clusters) are subsequently 120 

used to build initial configurations for the larger clusters starting over from (1). The 121 

initial PZ conformations for building the (PZ)1(SA)1 and (PZ)2 clusters were obtained 122 

from our previous AIMD simulation.32 All geometry optimization, vibrational 123 

frequency calculations and single point energies using the PM6 and wB97X-D methods 124 

were performed in the GAUSSIAN 09 program package.89 The DLPNO-CCSD(T)/aug-125 

cc-pVTZ calculation was performed in the ORCA 4.0.0 program.90 The wB97X-D/6-126 

31++G(d,p) and DLPNO-CCSD(T)/aug-cc-pVTZ methods were selected as the core 127 

optimization/frequency and single point energy calculations, respectively, since they 128 

have shown good performance for studying the formation of atmospheric molecular 129 

clusters.70,91,92 The Gibbs free energy (G) of the identified clusters were calculated at 130 

298.15 K with the following formula: 131 

G = E + Gcorr                                                (1) 132 

where E is the electronic single point energy at the DLPNO-CCSD(T)/aug-cc-pVTZ 133 

level of theory and Gcorr is the Gibbs free energy correction at the wB97X-D/6-134 

31++G(d,p) level of theory. The formation free energy (DG) for each cluster at 298.15 135 

K was calculated by:  136 

DG = Gcluster − SGmonomer                                    (2) 137 

where Gcluster and Gmonomer is the free energy of the cluster and the constituent molecules, 138 

respectively. The DG values at other temperatures were calculated under the assumption 139 

that enthalpy (DH) and entropy (DS) change remain constant in the tropospheric 140 

temperature range. It is important to note that the DG values of the cluster systems used 141 

as a comparison (MEA−SA, DMA−SA, PUT−SA), were obtained at the same 142 

theoretical level as those in this study. The Cartesian coordinates of the stable PZ−SA 143 



clusters were presented in the Supporting Information (SI). 144 

To investigate the effect of hydration, we studied the (PZ)x(SA)yWz (x = 0−2, y = 145 

0−2, z = 1−5, “W” represents H2O) clusters. The (SA)1W1-5 and (SA)2W1-3 clusters were 146 

taken from previous studies.70,93 The global minima of (SA)2W4-5 and (PZ)1-2(SA)1-2W1-147 

5 clusters were identified by the same sampling scheme that was used for the unhydrated 148 

PZ−SA clusters.  149 

Atmospheric Clusters Dynamic Code (ACDC) Model. The time evolution of 150 

formation rates, steady-state concentrations and growth paths of clusters were studied 151 

using the ACDC code. The detailed theory of the ACDC can be seen in a previous 152 

study.81 Here, the simulation system was treated as a “4 × 4” box for the unhydrated 153 

PZ−SA system, where 4 is the maximum number of PZ or SA molecules of the clusters. 154 

The mobility diameter of the largest cluster is ~1.5 nm, which closely resembles the 155 

sizes of clusters that can be deemed stable against evaporation in the ambient 156 

atmosphere. The (PZ)4(SA)5 and (PZ)5(SA)5 clusters were set as the boundary clusters 157 

(SI). The ACDC simulations were mainly performed at 278.15 K. In addition, to probe 158 

the temperature effect, we also conducted simulations at other temperatures such as 159 

258.15, 268.15, 288.15, 298.15 and 313.15 K. The concentration of SA ([SA]) and PZ 160 

([PZ]) were set to be 105, 106, 107 and 108 cm−3 (a range relevant to atmospheric particle 161 

formation)62,94-97 and 1, 10, 100 ppt (partly higher than that (about 4 ppt) measured in 162 

Zonguldak province, Turkey),76 respectively. To consider external losses, a constant 163 

coagulation sink coefficient of 2.6 ´ 10-3 s-1 was used.98,99 When studying the effect of 164 

hydration, the simulation system was treated as a “2 × 2” box. The [SA] and [PZ] were 165 

set to be 106 cm-3 and 10 ppt, respectively, and the simulations were performed at 166 

278.15 K. The equilibrium hydrate distribution for each cluster was calculated by the 167 

equilibrium constant for the formation of the respective hydrate.88,93,100 The (PZ)2(SA)3 168 



and (PZ)3(SA)3 clusters were set as the boundary clusters for the hydrated system.  169 

RESULTS AND DISCUSSION 170 

Cluster Structures. Since many previous studies have already discussed the structures 171 

of pure SA clusters,81 herein, we mainly focus on the clusters (PZ)x(SA)y (x = 0−4, y = 172 

1−4). The structures of (PZ)x(SA)y (x = 0−4, y = 1−4) clusters with the lowest Gibbs 173 

free energy were presented in Figure 1 and the number of the proton transfer observed 174 

in the PZ-SA clusters were shown in Table S2. For the homomolecular PZ clusters, 175 

proton transfer is not observed and all the clusters except (PZ)2 are mainly stabilized by 176 

hydrogen bonds (H-bonds), similar to the cases of studied homomolecular NH3 or 177 

amines clusters.56,58,59,69,70,78,101,102 However, the (PZ)2 cluster is stabilized by two 178 

N···HC interactions. For heteromolecular PZ−SA clusters, proton transfer is observed 179 

in all cases and the clusters are stabilized by H-bonds and ionic electrostatic 180 

interactions. The proton transfer involves two different patterns. In the first pattern, 181 

only one proton of SA is transferred. Therefore, the formation of sulfate ion (SO42−) is 182 

not observed. In this pattern, PZ can accept one proton in two different ways: 1) one 183 

PZ molecule only accepts a single proton. The clusters following this way include 184 

(PZ)1(SA)1-3, (PZ)2(SA)1-4, (PZ)3(SA)1 and (PZ)3(SA)3. Therefore, only one –NH– 185 

group of PZ is protonated for these clusters. 2) one PZ molecule accepts two protons 186 

from different SA molecules. Therefore, the two –NH– groups of one PZ are 187 

protonated. This phenomenon is only observed in the (PZ)1(SA)4 cluster. 188 

In the second pattern, one SA molecule transfers two protons to two different PZ 189 

molecules, resulting in the formation of a SO42- and a single protonated –NH– group in 190 

the two PZ molecules, as seen in the (PZ)4(SA)1-4, (PZ)3(SA)2, and (PZ)3(SA)4 cluster 191 

structures. In the (PZ)3(SA)4 and (PZ)4(SA)4 clusters, two and one SA molecules do not 192 

transfer any proton, respectively, which makes the number of SA molecules that donate 193 



a proton less than the number of protonated PZ. Therefore, one SA in these two clusters 194 

has to donate two protons leading to the formation of a SO42-. These patterns are vastly 195 

different from previously reported amines (MA, MEA, DMA and PUT) and SA clusters 196 

with the same composition of acid-base molecules.69,70,78 Note that the maximum 197 

number of formed SO42− is one in all considered clusters, in contrast to the clusters 198 

consisting of SA and chainlike diamine PUT, in which several SO42− can be formed.78 199 

The difference results from the fact that it is unfavorable for the rigid structure of PZ to 200 

simultaneously accept two protons from one SA as opposed to chainlike diamines such 201 

as PUT. Therefore, from a structural point of view, PZ behaves more like a monoamine 202 

in stabilizing SA. Another structural feature in all the clusters except (PZ)1(SA)4 is that 203 

only one of the –NH– groups of PZ interacts with SA or PZ molecule, the remaining –204 

NH– group points towards the outside. Therefore, the two –NH– groups of PZ neither 205 

behave like chainlike diamine to accept two protons from one SA, nor like MEA to 206 

synergistically interact with SA or another amine molecule via two functional 207 

groups.70,78 208 



 209 

Figure 1. Identified lowest free energy structures of the (PZ)x(SA)y (x = 0−4, y = 1−4) 210 

clusters at the ωB97X-D/6-31++G(d,p) level of theory. The red, blue, gray and white 211 

balls represent oxygen, nitrogen, carbon and hydrogen atoms, respectively. Dashed red 212 

lines indicate hydrogen bonds. 213 

Cluster Formation Free Energy. Both ambient observations and experimental studies 214 

have confirmed that DMA is one of the strongest species for stabilizing SA clusters and 215 

thus enhancing NPF.61,62,71 Therefore, the ΔG values of the DMA−SA system were 216 

taken as reference to discuss those of the PZ−SA system. The formation free energy 217 



surface of the PZ−SA system obtained at the DLPNO-CCSD(T)/aug-cc-pVTZ level of 218 

theory and 278.15 K was shown in Figure 2A, and the corresponding formation free 219 

energy surface at 298.15 K, ΔH and ΔS values were presented in SI. A comparison for 220 

the formation free energies at the ωB97X-D/6-31++G(d,p) level and the DLPNO-221 

CCSD(T)/aug-cc-pVTZ level was presented in SI. As can be seen in Figure 2A, the ΔG 222 

values for all the PZ−SA clusters are lower than those of the corresponding DMA−SA 223 

clusters,70 implying a high enhancing potential of PZ on SA-based NPF. The lower ΔG 224 

values of all PZ−SA clusters relative to the corresponding DMA−SA clusters are 225 

consistent with the order of their GB values (PZ > DMA). Therefore, the GB plays a 226 

determining role in the ΔG values of PZ−SA clusters, agreeing well with recent finding 227 

on the importance of the GB in the ΔG values for < 2 nm amine-SA clusters.55,103 228 

For the potential use of PZ as an alternative solvent to MEA in PCCC applications, 229 

it is interesting to compare the ΔG values of PZ−SA with the MEA−SA systems. It was 230 

found that ΔG values of the majority of the PZ−SA clusters are lower than those of the 231 

corresponding MEA−SA clusters with the exception of the (PZ)2-4 and (PZ)1(SA)3-4 232 

clusters. This exception illustrates the important role of the –OH group of MEA in the 233 

formation of MEA−SA clusters as presented in our previous study.70 234 

  

Figure 2. Calculated formation free energies (ΔG) (A) for (PZ)x(SA)y clusters (x = 0−4, 235 

y = 0−4) at the DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of 236 

theory and corresponding total evaporation rates (B) for each cluster at 278.15 K and 237 



the reference pressure of PZ and SA is set to 1 atm. 238 

Evaporation Rates and Cluster Stability. Comparing the evaporation rate of a cluster 239 

to the growth rate due to the collisions with vapor molecules at the given acid and base 240 

concentration yields a measure of the stability of the cluster against evaporation. The 241 

calculated evaporation rates of all PZ−SA clusters at 278.15 K were presented in Figure 242 

2B. According to the condition judging the stability of a cluster (the cluster with 243 

evaporation rate lower than 10-3 s-1 is stable when the concentration of acid or base 244 

monomer is around or above ppt level), only (PZ)1(SA)2, (PZ)1(SA)4, (PZ)2(SA)2, 245 

(PZ)2(SA)4, (PZ)3(SA)3, (PZ)4(SA)3, and (PZ)4(SA)4 clusters can be considered stable 246 

enough against evaporation. The three clusters along the diagonal ((PZ)2(SA)2, 247 

(PZ)3(SA)3, (PZ)4(SA)4) as well as the (PZ)1(SA)2 clusters are the most stable with 248 

evaporation rates of 10-5−10-7 s-1. In addition, the clusters (PZ)2(SA)3 and (PZ)3(SA)4 249 

are relatively stable with evaporation rates in the order of 10-2 s-1. By checking the 250 

evaporation rates for all possible evaporation pathways of each of the PZ−SA clusters 251 

(Table S3), it was found that the main decay route for all PZ−SA clusters (except 252 

clusters (PZ)4(SA)2-4) is via evaporation of a PZ or SA monomer. A detailed discussion 253 

on the main decay routes for all PZ−SA clusters were presented in SI.  254 

It is also interesting to compare cluster evaporation rates for the different amines 255 

(MEA, DMA, PZ and PUT) at the same simulation conditions. Generally, most of the 256 

PZ−SA clusters have lower evaporation rates than the corresponding 257 

DMA/MEA/PUT−SA clusters.70,78 For the number of clusters with evaporation rates 258 

less than or around 10-3 s-1, the PZ−SA system is equal to that of the PUT−SA system 259 

and higher than the MEA/DMA−SA systems. The PZ−SA system has more clusters 260 

with evaporation rates less than or around 10-5 s-1 than any other amines-SA systems. 261 

This indicates that the PZ−SA system has more stable clusters than the MEA/DMA−SA 262 



systems and more high stable clusters than the PUT−SA system. In addition, these 263 

stable clusters for the PZ−SA system are more even-distributed among the clusters with 264 

different size than those of other systems. The above results do not necessarily 265 

guarantee the faster growth of PZ−SA system compared to the DMA/MEA/PUT−SA 266 

systems. However, the higher number of stable clusters will facilitate the growth of the 267 

PZ−SA system once the crucial PZ−SA cluster is formed. When the initially formed 268 

one SA and one base cluster, which are crucial for cluster growth at relevant SA and 269 

base concentration for PZ−SA (see Section Growth Pathway), DMA−SA, MEA−SA 270 

and PUT−SA systems,69,70,78 are compared, the trend in evaporation rate follows 271 

(PUT)1(SA)1 > (PZ)1(SA)1 > (DMA)1(SA)1 > (MEA)1(SA)1 at the given acid and base 272 

concentrations.70,78  273 

Steady-State Cluster Concentrations and Formation Rates. The cluster formation 274 

rates (JPZ) and steady-state sulfuric acid dimer concentrations ( ) as a 275 

function of the concentration of SA (105−108 cm-3) and PZ (1−100 ppt) for the PZ−SA 276 

system at 278.15 K were presented in Figure 3. The comparison with the DMA−SA 277 

(JDMA, ), PUT−SA (JPUT, ) and MEA−SA (JMEA, 278 

) cluster systems were shown in Figure S3. As can be seen in Figure 279 

3, with increasing [SA] and [PZ], JPZ and  gradually increase. As the 280 

[PZ] increases,  becomes saturated. More importantly, the JPZ is 1−103, 281 

8−103 and 0.02−0.9 times that of JDMA, JMEA and JPUT, respectively, and 282 

 is 0.7−2, 5−80 and 0.08−0.9 times that of , 283 

 and , respectively, depending on the 284 

concentration of SA and amines. The enhancing potential of these four amines follows 285 
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the order PUT > PZ > DMA > MEA, consistent with the order of their GB values (PUT 286 

954.3, PZ 914.7, DMA 896.5, MEA 896.8 kJ mol-1) except for MEA. In addition, both 287 

JPZ and  present a negative temperature dependence in temperature 288 

range of 258.15−313.15 K (Figure S4), similar to the case of the MEA−SA system.70  289 

We noted that ambient observations and experiments have shown that DMA is a 290 

dominant enhancing agent for SA-based NPF at 5−10 ppt level although its atmospheric 291 

concentration is 2-3 orders magnitude lower than that of ammonia and similar to or a 292 

little lower than other atmospheric amines.1,62,71,104 In ambient observations and 293 

experiments, coexisting amines with DMA mainly included monoamines.2-4 With our 294 

computational data, the required concentration of PZ, which can lead to a similar 295 

enhancing effect of 5−10 ppt DMA on SA-based NPF at 278.15 K, is estimated. It is 296 

found that 2−4 ppt PZ ([SA] =107 cm-3) and 1.5−3 ppt PZ ([SA] =106 cm-3) yield a 297 

similar enhancing effect as 5-10 ppt DMA. Therefore, it can be concluded that PZ can 298 

significantly enhance SA-based NPF when the atmospheric [PZ] reaches ppt level, a 299 

similar concentration as measured in the Zonguldak province, Turkey.76 These findings 300 

imply that if PZ is used as PCCC solvent, local discharges will lead to a high potential 301 

to form new particles in the atmosphere. 302 

  

 

Figure 3. Simulated steady-state SA dimer concentration  (cm-3) (A) 303 

and the cluster formation rates JPZ (cm-3 s-1) out of the simulation systems (B) as a 304 
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å

2 i[(SA) (PZ) ]
i
å



function of [PZ] at 278.15 K.  305 

Growth Pathways. The growth pathway and actual Gibbs free energy surface for the 306 

PZ−SA clusters at 278.15 K, [SA] = 106 cm−3 and [PZ] = 10 ppt were shown in Figure 307 

4. As can be seen in Figure 4A, the first step of the PZ−SA system growth is the 308 

formation of the (PZ)1(SA)1 cluster, similar to the cases of the MEA−SA and DMA−SA 309 

systems.70 The growth of the formed (PZ)1(SA)1 cluster mainly proceeds by first adding 310 

one SA molecule, and then one PZ molecule until the formation of (PZ)3(SA)3 cluster. 311 

This mechanism is similar to the case of the MEA−SA system.70 However, different 312 

from MEA−SA system, the (PZ)3(SA)3 cluster growth mainly proceeds by first adding 313 

one PZ molecule, and then one SA molecule to form (PZ)4(SA)4 cluster. Collisions with 314 

the (PZ)1(SA)1 cluster, instead of PZ or SA molecule, contributes 20-33% to the 315 

formation of (PZ)2(SA)2, (PZ)3(SA)3 and (PZ)4(SA)4 clusters. (PZ)4(SA)5 (57%) is main 316 

cluster leaving the simulation box, followed by (PZ)5(SA)5 (24%), (PZ)6(SA)5 (10%) 317 

and other clusters (9%). Combining the growth pathway with the actual Gibbs free 318 

energy surface (Figure 4B), it can be seen that only the cluster (PZ)2(SA)2 ® 319 

(PZ)2(SA)3 process needs to overcome a small barrier, whereas the remaining processes 320 

along the main growth pathway are barrierless after the formation of the (PZ)1(SA)1 321 

cluster. However, the growth pathway via cluster collisions with (PZ)1(SA)1 cluster 322 

along the diagonal is barrierless along the entire growth pathway. Combining the 323 

growth pathway with the evaporation rate of the PZ−SA system, we conclude that the 324 

formation of initial (PZ)1(SA)1 cluster is the rate determining step for the cluster growth 325 

due to its instability compared with other clusters in the growth pathway, similar to 326 

cases of clusters containing SA and other amines including MA, MEA and DMA.70  327 



  

Figure 4. Main clustering pathways (A) and actual Gibbs free energy surface (B) for 328 

the formation of clusters (PZ)x(SA)y (x = 0−4, y = 0−4) at 278.15 K, [SA] = 106 cm−3, 329 

and [PZ] = 10 ppt. 330 

Hydration Effect. We considered 1−5 H2O molecules to study the effect of hydration 331 

on the formation kinetics of the PZ−SA clusters. It should be noted that only clusters 332 

(PZ)x(SA)y (x = 0−2, y = 0−2) were considered as a test to investigate the effect of 333 

hydration as the computational cost increasing rapidly when studying larger clusters. 334 

Details for the discussion on the calculated stepwise hydration free energies and the 335 

optimized conformations of the hydrated PZ-SA clusters were presented in the SI. The 336 

calculated equilibrium hydrate distributions of the clusters at 278.15 K and relative 337 

humidities (RH) 20%, 50% and 80% were presented in Figure S5. Figure S5 shows that 338 

the PZ−SA clusters are hydrated by less than three H2O molecules depending on the 339 

RH. The evaporation rates and formation rates compared to dry conditions as a function 340 

of RH at 278.15 K were presented in Figure 5. Figure 5A shows that the effect of 341 

hydration on the evaporation rates depends on the cluster composition. Hydration has 342 

little effect on the (SA)2 cluster and almost no effect on the (PZ)2 and (PZ)2(SA)2 343 

clusters. However, the evaporation rates of the (PZ)1(SA)2 and (PZ)2(SA)1 clusters can 344 

be increased up to 50 and 190 times by hydration compared to the dry cases, 345 

respectively. However, hydration can greatly decrease (up to 50 times) the evaporation 346 



rate of the initially formed (PZ)1(SA)1 cluster, the rate-determining step for the cluster 347 

growth in the system. This is the main reason for the increase in the cluster formation 348 

rates (Figure 5B) when hydration is considered compared to the dry case. The cluster 349 

formation rates increase up to 2 times compared to the dry case. Therefore, from these 350 

small cluster hydration simulations, we can conclude that hydration has a significant 351 

effect on the evaporation rates and a minor effect on the formation rates. 352 

  

Figure 5. Relative evaporation rates (A) and cluster formation rates ([SA] = 106 cm−3 353 

and [PZ] = 10 ppt) (B) as a function of relative humidities (RH) at 278.15 K. 354 

Implications. We have revealed that PZ at ppt level can significantly enhance SA-355 

based NPF. The enhancing potential of PZ is higher than that of DMA and MEA, and 356 

lower than that of PUT.70,78 The order of the enhancing potential of the amines is 357 

consistent with that of their GB, further indicating the important role of GB of amines 358 

involved in SA-based NPF. In addition, we showed that the two –NH– groups of PZ 359 

cannot synergistically interact with SA, making PZ behave similarly to monoamines as 360 

opposed to chainlike diamines in stabilizing SA. In this way, one of the –NH– groups 361 

points outwards from the clusters. The existence of the exterior –NH– group on the 362 

surface of the clusters would make the subsequent growth mechanism of the PZ-SA 363 

nucleus different from other cases of amines-SA nucleation. It could be interesting to 364 

probe the further growth mechanism of PZ-SA nucleation in future by studying larger 365 
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cluster structures.  366 

Obviously, the participation in SA-based NPF is one removal pathway for the 367 

emitted PZ, similar to the case of MEA. The removal rate constants (kSA) of PZ by 368 

participating in SA-based NPF are estimated to be 3.2 ´ 10-10 and 4.0 ´ 10-10 cm-3 369 

molecule-1 s-1 at 278.15 K at dry (RH = 0) and 50% RH conditions, respectively (SI). 370 

Previous studies have shown that the reactions with ·OH and ·Cl are important removal 371 

pathways for PZ at daytime, due to their high reaction rate constants (kOH = 2.7 ´ 10-10 372 

cm-3 molecule-1 s-1, kCl = 4.7 ´ 10-10 cm-3 molecule-1 s-1) at 278.15 K.28,32 The three 373 

reactive agents (·OH, ·Cl and SA) toward PZ can coexist in the atmosphere and the 374 

concentration of ·Cl ([·Cl]) and [SA] is estimated to be around 0.01−0.1 and 1−19 times 375 

of that of ·OH ([·OH]) during daytime, respectively.105-110 Based on kSA, kOH, kCl, [SA], 376 

[·OH] and [·Cl], we estimated the contribution of the participation in SA-based NPF 377 

(ConSA) to the removal of PZ by kSA[SA]/(kOH[·OH] + kCl[·Cl] + kSA[SA]) at 278.15 K 378 

and RH=0 or 50% (Table S6). As can be seen in Table S6, ConSA is 50%-97%, 379 

indicating the participation in SA-based NPF is a dominant removal pathway for PZ at 380 

278.15 K, especially at high [SA]. It was found that the ConSA to the removal of PZ has 381 

a negative temperature dependence in temperature range of 258.15−313.15 K (Figure 382 

S6). When the temperature effect is considered, the participation in SA-based NPF still 383 

play an important role in removing PZ at all atmospheric conditions, except a combined 384 

condition of low [SA], low RH and high temperature. Therefore, if ignoring the 385 

participation of PZ in SA-based NPF, the contribution of atmospheric oxidation by ·OH 386 

and ·Cl to the removal of PZ will be highly overestimated. In addition, the contribution 387 

of the participation in SA-based NPF on PZ removal is higher than that to the MEA 388 

removal at both 0 and 50% RH conditions, and 278.15 K (SI). More importantly, the 389 

high contribution of the NPF pathway to the removal of PZ decreases the overall 390 



nitrosamine yield compared to only considering the atmospheric ·OH and ·Cl oxidation 391 

pathways. The higher contribution of the NPF pathway to the removal of PZ than that 392 

to the removal of MEA decreases their relative risk of nitrosamine formation. A detailed 393 

discussion on the reevaluation of the overall nitrosamine yield of PZ and MEA was 394 

presented in SI. Therefore, this study further stresses that the participation in SA-based 395 

NPF should be considered for other atmospheric amines to evaluate the environmental 396 

risk, especially for the formation of carcinogenic nitrosamine.  397 
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