319 research outputs found
The Cosmic Microwave Background and Particle Physics
In forthcoming years, connections between cosmology and particle physics will
be made increasingly important with the advent of a new generation of cosmic
microwave background (CMB) experiments. Here, we review a number of these
links. Our primary focus is on new CMB tests of inflation. We explain how the
inflationary predictions for the geometry of the Universe and primordial
density perturbations will be tested by CMB temperature fluctuations, and how
the gravitational waves predicted by inflation can be pursued with the CMB
polarization. The CMB signatures of topological defects and primordial magnetic
fields from cosmological phase transitions are also discussed. Furthermore, we
review current and future CMB constraints on various types of dark matter (e.g.
massive neutrinos, weakly interacting massive particles, axions, vacuum
energy), decaying particles, the baryon asymmetry of the Universe,
ultra-high-energy cosmic rays, exotic cosmological topologies, and other new
physics.Comment: 43 pages. To appear in Annual Reviews of Nuclear and Particle Scienc
Quantum systems in weak gravitational fields
Fully covariant wave equations predict the existence of a class of
inertial-gravitational effects that can be tested experimentally. In these
equations inertia and gravity appear as external classical fields, but, by
conforming to general relativity, provide very valuable information on how
Einstein's views carry through in the world of the quantum.Comment: 22 pages. To be published in Proceedings of the 17th Course of the
International School of Cosmology and Gravitation "Advances in the interplay
between quantum and gravity physics" edited by V. De Sabbata and A.
Zheltukhin, Kluwer Academic Publishers, Dordrech
MiR-128 Inhibits Tumor Growth and Angiogenesis by Targeting p70S6K1
MicroRNAs are a class of small noncoding RNAs that function as critical gene regulators through targeting mRNAs for translational repression or degradation. In this study, we showed that miR-128 expression levels were decreased in glioma, and identified p70S6K1 as a novel direct target of miR-128. Overexpression of miR-128 suppressed p70S6K1 and its downstream signaling molecules such as HIF-1 and VEGF expression, and attenuated cell proliferation, tumor growth and angiogenesis. Forced expression of p70S6K1 can partly rescue the inhibitory effect of miR-128 in the cells. Taken together, these findings will shed light to the role and mechanism of miR-128 in regulating glioma tumor angiogenesis via miR-128/p70S6K1 axis, and miR-128 may serve as a potential therapeutic target in glioma in the future
Phytochemicals as antibiotic alternatives to promote growth and enhance host health
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin
Decreasing the use of edible oils in China using WeChat and theories of behavior change: study protocol for a randomized controlled trial.
The consumption of edible oils in China has increased rapidly in recent years, and the total amount of edible-oil intake in the country has ranked first in the world. The choice and intake of edible oils, as a source of fats, are important factors that affect people's health. Many chronic diseases are closely associated with high-calorie and saturated-fat intake. The influence of traditional concepts that promote the use of edible oils among women, particularly housewives, plays a key role in a household's diet and nutrition because the diet-related knowledge, attitude and behaviour of housewives are dominant factors in planning and preparing their family's meals. WeChat, which was developed by Tencent, is a multipurpose messaging, social media and mobile payment application (app) in China. Described by Forbes as one of the world's most powerful apps, WeChat provides considerable convenience in disseminating knowledge. Accordingly, this study aims to design a pilot intervention to decrease the use of edible oils in Chinese households. The intervention, which is based on theories of behaviour change, will be implemented through WeChat. The study design is a randomised controlled trial that adopts knowledge, attitude and practice, social cognitive and stages of change theories as theoretical models. A total of 800 housewives between the ages of 25 and 45 years will be recruited on WeChat and from the communities in four areas (including rural and urban) in Chongqing, China. A self-administered questionnaire will be used to collect information regarding age, educational level, occupation, family members, edible-oil intake habits, knowledge of edible oils and WeChat usage habits. A total of 200 participants will be selected and randomly assigned to two equal-sized groups: group A (the intervention group) and group B (the control group). Group A will receive health education regarding edible oils for four consecutive weeks, whereas group B will be treated as the blank control. Each participant will complete a battery of knowledge, attitude and behaviour tests immediately, 3 months and 6 months after the intervention. In addition, weight, moisture rate, fat rate, visceral fat level and body mass index will be calculated using a multifunctional weighing scale, namely, Tanita BC-601 (Japan). The study is currently in the design stage. This study aims to increase knowledge and awareness of the appropriate use of edible oils, thereby encouraging participants to change behaviour by decreasing the intake of unhealthy levels of edible oils. It will be the first intervention to investigate the use of edible oils in China through WeChat. We predict that receiving health education regarding edible oils through WeChat will substantially improve the knowledge and attitude of the respondents. The members of the intervention group will have increased awareness and will be willing to decrease their use of edible oils to remain healthy. Results of this study may provide scientific evidence for the effect of health education through WeChat on edible oil-intake behaviour, thereby offering a comprehensive intervention to decrease the use of edible oils and promote a healthy lifestyle. Chinese Clinical Trial Registry (primary registry in the World Health Organisation registry network): ChiCTR-IOR-17013472 . Registered on 21 November 2017
Direct Semi-Synthesis of the Anticancer Lead-Drug Protoapigenone from Apigenin, and Synthesis of Further New Cytotoxic Protoflavone Derivatives
Protoapigenone, a natural flavonoid possessing an unusual p-quinol moiety on its B-ring, is a novel prospective anticancer agent with low toxicity that is currently in development. The first economical, one-step synthesis of protoapigenone from apigenin is described on up to gram scale. 13 new 1′-O-alkylflavone analogs were also synthesized, either from apigenin or β-naphthoflavone. The in vitro cytotoxic activity of each compound was tested on six human cancer cell lines (HepG2, Hep3B, Ca9-22, A549, MCF-7 and MDA-MB-231). In the case of 1′-O-alkyl-protoapigenone derivatives, structure-activity relationships were found depending on the side-chain, and protoapigenone 1′-O-butyl ether was found to exert significantly stronger activity against three of the cell lines (Hep3B, MCF-7 and MDA-MB-231) than its non-substituted analog, protoapigenone itself. In contrast to this, all β-naphthoflavone derivatives bearing the same pharmacophore on their B-ring showed decreased cytotoxic activities when substituted with an O-alkyl side-chain at position 1′, comparing to that of the non-substituted compound
Cerebrospinal fluid sodium rhythms
Background: Cerebrospinal fluid (CSF) sodium levels have been reported to rise during episodic migraine. Since
migraine frequently starts in early morning or late afternoon, we hypothesized that natural sodium chronobiology
may predispose susceptible persons when extracellular CSF sodium increases. Since no mammalian brain sodium
rhythms are known, we designed a study of healthy humans to test if cation rhythms exist in CSF.
Methods: Lumbar CSF was collected every ten minutes at 0.1 mL/min for 24 h from six healthy participants. CSF
sodium and potassium concentrations were measured by ion chromatography, total protein by fluorescent
spectrometry, and osmolarity by freezing point depression. We analyzed cation and protein distributions over the
24 h period and spectral and permutation tests to identify significant rhythms. We applied the False Discovery Rate
method to adjust significance levels for multiple tests and Spearman correlations to compare sodium fluctuations
with potassium, protein, and osmolarity.
Results: The distribution of sodium varied much more than potassium, and there were statistically significant
rhythms at 12 and 1.65 h periods. Curve fitting to the average time course of the mean sodium of all six subjects
revealed the lowest sodium levels at 03.20 h and highest at 08.00 h, a second nadir at 09.50 h and a second peak
at 18.10 h. Sodium levels were not correlated with potassium or protein concentration, or with osmolarity.
Conclusion: These CSF rhythms are the first reports of sodium chronobiology in the human nervous system. The
results are consistent with our hypothesis that rising levels of extracellular sodium may contribute to the timing of
migraine onset. The physiological importance of sodium in the nervous system suggests that these rhythms may
have additional repercussions on ultradian functions
The Lyman Alpha Forest in the Spectra of QSOs
Observations of redshifted Lyman alpha forest absorption in the spectra of
quasistellar objects (QSOs) provide a highly sensitive probe of the
distribution of gaseous matter in the universe. Over the past two decades
optical spectroscopy with large ground-based telescopes, and more recently
ultraviolet spectroscopy from space have yielded a wealth of information on
what appears to be a gaseous, photoionized intergalactic medium, partly
enriched by the products of stellar nucleosynthesis, residing in coherent
structures over many hundreds of kiloparsecs. Recent progress with cosmological
hydro-simulations based on hierarchical structure formation models has led to
important insights into the physical structures giving rise to the forest. If
these ideas are correct, a truely inter- and proto-galactic medium [at high
redshift (z ~ 3), the main repository of baryons] collapses under the influence
of dark matter gravity into flattened or filamentary structures, which are seen
in absorption against background QSOs. With decreasing redshift, galaxies
forming in the denser regions, may contribute an increasing part of the Lyman
alpha absorption cross-section. Comparisons between large data samples from the
new generation of telescopes and artificial Lyman alpha forest spectra from
cosmological simulations promise to become a useful cosmological tool.Comment: latex plus three postscript figures, uses psfig,sty; Annual Review of
Astronomy and Astrophysics 1998, vol. 36 (in press
Nicotinic acetylcholine receptors modulate osteoclastogenesis
Background: Our aim was to investigate the role of nicotinic acetylcholine receptors (nAChRs) in in-vitro osteoclastogenesis and in in-vivo bone homeostasis. Methods: The presence of nAChR subunits as well as the in-vitro effects of nAChR agonists were investigated by ex vivo osteoclastogenesis assays, real-time polymerase chain reaction, Western blot and flow cytometry in murine bone marrow-derived macrophages differentiated in the presence of recombinant receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The bone phenotype of mice lacking various nAChR subunits was investigated by peripheral quantitative computed tomography and histomorphometric analysis. Oscillations in the intracellular calcium concentration were detected by measuring the Fura-2 fluorescence intensity. Results: We could demonstrate the presence of several nAChR subunits in bone marrow-derived macrophages stimulated with RANKL and M-CSF, and showed that they are capable of producing acetylcholine. nAChR ligands reduced the number of osteoclasts as well as the number of tartrate-resistant acidic phosphatase-positive mononuclear cells in a dose-dependent manner. In vitro RANKL-mediated osteoclastogenesis was reduced in mice lacking α7 homomeric nAChR or β2-containing heteromeric nAChRs, while bone histomorphometry revealed increased bone volume as well as impaired osteoclastogenesis in male mice lacking the α7 nAChR. nAChR ligands inhibited RANKL-induced calcium oscillation, a well-established phenomenon of osteoclastogenesis. This inhibitory effect on Ca2+ oscillation subsequently led to the inhibition of RANKL-induced NFATc1 and c-fos expression after long-term treatment with nicotine. Conclusions: We have shown that the activity of nAChRs conveys a marked effect on osteoclastogenesis in mice. Agonists of these receptors inhibited calcium oscillations in osteoclasts and blocked the RANKL-induced activation of c-fos and NFATc1. RANKL-mediated in-vitro osteoclastogenesis was reduced in α7 knockout mice, which was paralleled by increased tibial bone volume in male mice in vivo. © 2016 Mandl et al
Coaction of Spheroid-Derived Stem-Like Cells and Endothelial Progenitor Cells Promotes Development of Colon Cancer
Although some studies described the characteristics of colon cancer stem cells (CSCs) and the role of endothelial progenitor cells (EPCs) in neovascularization, it is still controversial whether an interaction exists or not between CSCs and EPCs. In the present study, HCT116 and HT29 sphere models, which are known to be the cells enriching CSCs, were established to investigate the roles of this interaction in development and metastasis of colon cancer. Compared with their parental counterparts, spheroid cells demonstrated higher capacity of invasion, higher tumorigenic and metastatic potential. Then the in vitro and in vivo relationship between CSCs and EPCs were studied by using capillary tube formation assay and xenograft models. Our results showed that spheroid cells could promote the proliferation, migration and tube formation of EPCs through secretion of vascular endothelial growth factor (VEGF). Meanwhile, the EPCs could increase tumorigenic capacity of spheroid cells through angiogenesis. Furthermore, higher microvessel density was detected in the area enriching cancer stem cells in human colon cancer tissue. Our findings indicate that spheroid cells possess the characteristics of cancer stem cells, and the coaction of CSCs and EPCs may play an important role in the development of colon cancer
- …