3 research outputs found

    Toughness modification of SBS/CRMA on epoxy asphalt: curing behaviour and low-temperature cracking characteristic analysis

    Get PDF
    The limited utilisation of epoxy asphalt primarily stems from its inherent brittle cracking behaviour. This investigation aims to mitigate this issue by introducing styrene–butadiene-styrene/crumb rubber modified asphalt (SBS/CRMA). Furthermore, this research assesses the influence of SBS/CRMA on the curing behaviour of epoxy asphalt (EA) and the low-temperature fracture characteristics of epoxy asphalt concrete (EAC). The curing behaviour of EA was systematically examined using diverse analytical techniques, including attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR), rotational viscosity, and non-isothermal curing kinetics analysis. Notably, SBS/CRMA expedites the curing process of epoxy asphalt, possibly attributed to the amine constituents in the crumb rubber, which acts as catalyst. Subsequently, the study scrutinised the fracture characteristics of EAC through the application of the semicircle bending (SCB) test and acoustic emission (AE) methodology. The results substantiate that SBS/CRMEAC imparts a proficient toughening effect, underpinned by an augmented stress relaxation capacity due to the reinforcing influence of elastomers such as crumb rubber and SBS. The fracture process was delineated into three distinct stage and the AE signal in matrix epoxy asphalt (MEA) exhibited concentration during the macroscopic crack extension and final fracture stages. In stark contrast, SBS/CRMEAC exhibited a uniform distribution and showcased ductile fracture characteristics

    Performance Evaluation and Structure Optimization of Low-Emission Mixed Epoxy Asphalt Pavement

    No full text
    Epoxy asphalt concrete (EAC) has excellent properties such as high strength, outstanding thermal stability, and great fatigue resistance, and is considered to be a long-life pavement material. Meanwhile, the low initial viscosity of the epoxy components provides the possibility to reduce the mixing temperature of SBS-modified asphalt. The purpose of this study is to verify the feasibility of low-emission mixing of SBS-modified epoxy asphalt and to compare the mechanical responses in several typical structures with EAC, in order to perform structure optimization for practical applications of EAC. In this paper, the Brookfield rotational viscosity test was conducted to investigate the feasibility of mixing SBS-modified epoxy asphalt at a reduced temperature. Subsequently, the dynamic modulus tests were carried out on EAC to obtain the Prony series in order to provide viscoelastic parameters for the finite element model. Six feasible pavement structures with EAC were proposed, and a finite element method (FEM) model was developed to analyze and compare the mechanical responses with the conventional pavement structure. Additionally, the design life was predicted and compared to comprehensively evaluate the performance of EAC structures. Finally, life cycle assessment (LCA) on carbon emissions was developed to explore the emission reduction effect of the epoxy asphalt pavement. The results indicate that the addition of epoxy components could reduce the mixing temperature of SBS-modified asphalt by 30 °C. The proper use of EAC can significantly improve the mechanical condition of the pavement and improve its performance and service life. It is recommended to choose S5 (with EAC applied in the middle-lower layer) as the optimal pavement structure, whose allowable load repetitions to limit fatigue cracking were more than 1.7 times that of conventional pavements and it has favorable rutting resistance as well. The LCA results show that in a 25-year life cycle, the carbon emissions of epoxy asphalt pavements could be reduced by 29.8% in comparison to conventional pavements
    corecore