18 research outputs found

    Apolipoprotein E mRNA expression in mononuclear cells from normolipidemic and hypercholesterolemic individuals treated with atorvastatin

    Get PDF
    Abstract\ud \ud Background\ud Apolipoprotein E (apoE) is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE) have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population.\ud \ud \ud Methods\ud APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL) and 181 hypercholesterolemic (HC) subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141) were treated with atorvastatin (10 mg/day/4-weeks). APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC) were analyzed by TaqMan real time PCR.\ud \ud \ud Results\ud HC had lower APOE expression than NL group (p < 0.05) and individuals with low APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p < 0.05). Individuals carrying ε2 allele have reduced risk for hypercholesterolemia (OR: 0.27, 95% I.C.: 0.08-0.85, p < 0.05) and NL ε2 carriers had lower total and LDL cholesterol and apoB levels, and higher HDL cholesterol than non-carriers (p < 0.05). APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p < 0.05).\ud \ud \ud Conclusions\ud APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response

    Apolipoprotein E mRNA expression in mononuclear cells from normolipidemic and hypercholesterolemic individuals treated with atorvastatin

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud Apolipoprotein E (apoE) is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE) have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population.\ud \ud \ud \ud Methods\ud \ud APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL) and 181 hypercholesterolemic (HC) subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141) were treated with atorvastatin (10 mg/day/4-weeks). APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC) were analyzed by TaqMan real time PCR.\ud \ud \ud \ud Results\ud \ud HC had lower APOE expression than NL group (p < 0.05) and individuals with low APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p < 0.05). Individuals carrying ε2 allele have reduced risk for hypercholesterolemia (OR: 0.27, 95% I.C.: 0.08-0.85, p < 0.05) and NL ε2 carriers had lower total and LDL cholesterol and apoB levels, and higher HDL cholesterol than non-carriers (p < 0.05). APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p < 0.05).\ud \ud \ud \ud Conclusions\ud \ud APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response.The present study was supported by a grant from FAPESP (Protocol # 2009/15125-8). We thank the volunteers for their participation and physicians and nurses from the Medical Clinics Division of the University Hospital of the University of Sao Paulo for technical support during patient selection. Alvaro Cerda is a recipient of a fellowship from CONICYT-Chile, Mario H. Hirata and Rosario D.C. Hirata were recipients from CNPq-Brazil, and Fabiana D.V. Genvigir, Maria A.V. Willrich and Simone S. Arazi were recipients from FAPESP-Brazil

    Pharmacogenetics of OATP Transporters Reveals That SLCO1B1 c.388A>G Variant Is Determinant of Increased Atorvastatin Response

    Get PDF
    Aims: The relationship between variants in SLCO1B1 and SLCO2B1 genes and lipid-lowering response to atorvastatin was investigated. Material and Methods: One-hundred-thirty-six unrelated individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). They were genotyped with a panel of ancestry informative markers for individual African component of ancestry (ACA) estimation by SNaPshot® and SLCO1B1 (c.388A&gt;G, c.463C&gt;A and c.521T&gt;C) and SLCO2B1 (−71T&gt;C) gene polymorphisms were identified by TaqMan® Real-time PCR. Results: Subjects carrying SLCO1B1 c.388GG genotype exhibited significantly high low-density lipoprotein (LDL) cholesterol reduction relative to c.388AA+c.388AG carriers (41 vs. 37%, p = 0.034). Haplotype analysis revealed that homozygous of SLCO1B1*15 (c.521C and c.388G) variant had similar response to statin relative to heterozygous and non-carriers. A multivariate logistic regression analysis confirmed that c.388GG genotype was associated with higher LDL cholesterol reduction in the study population (OR: 3.2, CI95%:1.3–8.0, p &lt; 0.05). Conclusion: SLCO1B1 c.388A&gt;G polymorphism causes significant increase in atorvastatin response and may be an important marker for predicting efficacy of lipid-lowering therapy

    Cardiopoietic cell therapy for advanced ischemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial

    Get PDF
    Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort

    Pleiotropic Effects With Equivalent Low-density Lipoprotein Cholesterol Reduction: Comparative Study Between Simvastatin and Simvastatin/Ezetimibe Coadministration

    No full text
    Background: Coadministration of any statin with ezetimibe is as effective as using high doses of the same statin in the reduction Of tow-density lipoprotein cholesterol (LDL-c). There may be other effects called pleiotropics. Objective: To compare the effectiveness of 2 different treatments that obtain equivalent LDL-c reductions (80 mg of simvastatin, once a clay and coadministration of 10 mg of simvastatin and 10 mg of ezetimibe, once a day) over endothelial function and inflammation. Methods: Twenty-three randomized patients with hypercholesterolemia in a 2 X 2 crossover protocol were Studied. Endothelial function was analyzed by ultrasound assessment of endothelial dependent flow-mediated vasodilation of the brachial artery, and inflammation was estimated by high-sensitivity C-reactive protein (hs-CRP). Results: LDL-c reduction was similar between the 2 treatments with simvastatin/ezetimibe and with simvastatin (P < 0.001); no difference between treatments was found (P = 0.968). Both treatments improved significantly the endothelial function [3.61% with simvastatin/ezetimibe (P = 0.003) and 5.08%. with simvastatin (P < 0.001)]; no difference was found between the 2 treatments (P = 0.291). hs-CRP had a 23% reduction with simvastatin/ezetimibe (P = 0.004) and a 30% reduction with simvastatin alone (P = 0.01), with no significant difference between the 2 treatments (P = 0.380). Conclusion: The 2 forms of treatment presented similar pleiotropic effects: improvement in endothelial function and decrease in hsCRP levels.Merck Sharp and DohmeAstra-ZenecaPfizerSchering-PloughBaye

    Atorvastatin and hormone therapy effects on APOE mRNA expression in hypercholesterolemic postmenopausal women

    Get PDF
    Menopause is associated with changes in lipid levels resulting in increased risk of atherosclerosis and cardiovascular events. Hormone therapy (HT) and atorvastatin have been used to improve lipid profile in postmenopausal women. Effects of HT, atorvastatin and APOE polymorphisms on serum lipids and APOE and LXRA expression were evaluated in 87 hypercholesterolemic postmenopausal women, randomly selected for treatment with atorvastatin (AT, n=17), estrogen or estrogen plus progestagen (HT, n=34) and estrogen or estrogen plus progestagen associated with atorvastatin (HT+AT, n=36). RNA was extracted from peripheral blood mononuclear cells (PBMC) and mRNA expression was measured by TaqMan (R) PCR. APOE epsilon 2/epsilon 3/epsilon 4 genotyping was performed using PCR-RFLP. Total cholesterol (TC). LDL-c and apoB were reduced after each treatment (p&lt;0.001). Triglycerides, VLDL-c and apoAl were reduced only after atorvastatin (p&lt;0.05), whereas triglycerides and VLDL-c were increased after HT (p=0.01). HT women had lower reduction on TC, LDL-c and apoB than AT and HT+AT groups (p&lt;0.05). APOE mRNA expression was reduced after atorvastatin treatment (p=0.03). Although LXRA gene expression was not modified by atorvastatin, it was correlated with APOE mRNA before and after treatments. Basal APOE mRNA expression was not influenced by gene polymorphisms, however the reduction on APOE expression was more pronounced in epsilon 3 epsilon 3 than in epsilon 3 epsilon 4 carriers. Atorvastatin down-regulates APOE mRNA expression and it is modified by APOE genotypes in PBMC from postmenopausal women. (C) 2011 Elsevier Ltd. All rights reserved.CNPqCNPq [474905/01-2]FAPESP, BrazilFAPESP (Brazil)CAPES, BrazilCAPES (Brazil)CONICYT, ChileCONICYT, ChileCNPq, BrazilCNPq (Brazil

    Apolipoprotein E mRNA expression in mononuclear cells from normolipidemic and hypercholesterolemic individuals treated with atorvastatin

    No full text
    Abstract Background Apolipoprotein E (apoE) is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE) have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population. Methods APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL) and 181 hypercholesterolemic (HC) subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141) were treated with atorvastatin (10 mg/day/4-weeks). APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC) were analyzed by TaqMan real time PCR. Results HC had lower APOE expression than NL group (p APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p Conclusions APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response.</p
    corecore