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Menopause  is  associated  with  changes  in  lipid  levels  resulting  in increased  risk  of atherosclerosis  and
cardiovascular  events.  Hormone  therapy  (HT)  and  atorvastatin  have  been  used  to  improve  lipid  profile
in postmenopausal  women.

Effects  of  HT, atorvastatin  and  APOE  polymorphisms  on serum  lipids  and  APOE  and  LXRA  expression
were  evaluated  in  87  hypercholesterolemic  postmenopausal  women,  randomly  selected  for  treatment
with atorvastatin  (AT, n =  17),  estrogen  or estrogen  plus  progestagen  (HT,  n  =  34)  and  estrogen  or estro-
gen  plus  progestagen  associated  with  atorvastatin  (HT + AT,  n  =  36).  RNA  was  extracted  from  peripheral
blood  mononuclear  cells  (PBMC)  and  mRNA  expression  was  measured  by TaqMan® PCR.  APOE �2/�3/�4
genotyping  was  performed  using  PCR-RFLP.

Total  cholesterol  (TC), LDL-c and apoB  were  reduced  after  each  treatment  (p  <  0.001).  Triglycerides,
VLDL-c  and  apoAI  were  reduced  only  after  atorvastatin  (p < 0.05),  whereas  triglycerides  and  VLDL-c  were
increased  after HT (p = 0.01).  HT  women  had  lower  reduction  on  TC,  LDL-c  and  apoB  than  AT  and  HT +  AT

groups  (p  <  0.05).  APOE  mRNA  expression  was  reduced  after  atorvastatin  treatment  (p =  0.03).  Although
LXRA  gene  expression  was  not  modified  by atorvastatin,  it was  correlated  with  APOE mRNA  before  and
after treatments.  Basal  APOE  mRNA  expression  was  not  influenced  by  gene  polymorphisms,  however  the
reduction on  APOE  expression  was  more  pronounced  in  �3�3 than  in �3�4 carriers.

Atorvastatin  down-regulates  APOE  mRNA  expression  and  it is modified  by APOE  genotypes  in  PBMC
from  postmenopausal  women.
. Introduction

Several lines of evidence demonstrate that dyslipidemia is asso-
iated with high risk of cardiovascular heart disease (CHD) in
omen [1].  Menopause status has been associated with changes in

ipid profile, specifically increase in plasma low density lipoprotein
LDL) cholesterol and triglycerides and reduction in high den-

ity lipoprotein (HDL) cholesterol, that result in increased risk of
therosclerosis and cardiovascular events [2].

Abbreviations: AT, women treated with atorvastatin; HT, hormone therapy or
omen  treated with estrogen or estrogen plus progestagen; HT + AT, women  treated
ith estrogen or estrogen plus progestagen associated with atorvastatin; PBMC,
eripheral blood mononuclear cells; APOE, apolipoprotein E gene; LXRA, liver X
eceptor alpha gene; CHD, cardiovascular heart disease; CAD, coronary artery dis-
ase.
∗ Corresponding author at: Av. Prof. Lineu Prestes, 580 B.17, 05508-900 Sao Paulo,

P,  Brazil. Tel.: +55 11 30913660; fax: +55 11 38132197.
E-mail address: rosariohirata@usp.br (R.D.C. Hirata).
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Apolipoprotein (apo) E is a multifunctional protein that plays a
key role in metabolism of cholesterol and triglycerides by binding
to receptors in liver contributing with the clearance of chylomi-
crons, very low density lipoprotein (VLDL) and HDL from plasma
[3]. Functionality of apoE has demonstrated to be determinant in
maintenance of cholesterol homeostasis. apoE deficiency in mice
leads to development of atherosclerosis and re-expression reduces
the extend of the disease [4].

Hormone therapy (HT) has been used in primary and secondary
prevention of CHD in postmenopausal women, however its long
term efficiency at this respect remains controversial [5].  The influ-
ence of HT on serum lipids, decreasing total and LDL cholesterol
and raising HDL cholesterol, support its beneficial cardiovascular
effects [6].

The use of statins, inhibitors of endogenous cholesterol syn-
thesis by competitive inhibition of hidroxi-metil-glutaril CoA

Open access under the Elsevier OA license.
reductase (HMGCR), has been largely described by numerous
clinical trials to reduce cardiovascular events by lowering the
cholesterolemia [7].  Nerveless, poorly investigated effects of statins
in some segments of the population as older women make statin
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ffect on hypercholesterolemic postmenopausal women  remain
nclear.

Polymorphisms in the apoE gene (APOE), mainly those that
ncode �2/�3/�4  protein isoforms, have been related to basal serum
ipids and CHD risk. Compared with �3 allele, the �2 allele is associ-
ted with lower levels whereas �4 is associated with higher levels of
DL cholesterol [8].  Moreover, �2/�3/�4  APOE genotypes also were
eported to modified lipid-lowering response to statins [9] and HT
10,11].

Transcriptional regulation of APOE in human tissues is medi-
ted by several factors. Increasing concentration of intracellular
ree cholesterol has been shown to stimulate APOE transcription
n macrophages and adipocytes as well as nuclear factors liver

 receptor alpha (LXRA) and beta (LXRB) that are key regulators
f APOE expression in these tissues [12]. Moreover, cholesterol-
owering drugs could control APOE expression by regulation of
ntracellular cholesterol pool.

The present study aims to evaluate APOE and LXRA mRNA
xpression in peripheral mononuclear cells of hypercholes-
erolemic postmenopausal women and their relationship with
POE genotypes and HT and atorvastatin treatment.

. Materials and methods

.1. Study design and protocol

This randomized controlled study aims to evaluate the effects
f atorvastatin and HT on APOE mRNA expression. Eighty-seven
atural postmenopausal, hypercholesterolemic and Caucasian-
escent Brazilian women (aged 50–65 years) were selected at
he Dyslipidemia Section of the Dante Pazzanese Institute of
ardiology (Sao Paulo City, Brazil) from 2003 to 2005. Subjects
ith thyroid, liver or renal disease, diabetes, hypertriglyceridemia

triglycerides > 400 mg/dl (4.52 mmol/l)] or under treatment with
ipid-lowering drugs were not included in the study. Moreover, all

omen were not smoking and had no family history of coronary
rtery disease (CAD). The sample size to estimate APOE mRNA val-
es was calculated using a pilot sample study (APOE mRNA mean
alue: 0.04685, SD: 0.02949) considering  ̨ = 0.1 and a relative error
f the mean estimation of 0.15. The minimum sample size needed
or the study was 47 individuals.

All participants had LDL cholesterol higher than 130 mg/dl
3.36 mmol/l), even after a wash-out period of four weeks on a low-
at diet, accompanied by nutritionists. All women were treated with
lacebo (1 tablet/day) for 4 weeks and this time was  established
s baseline period. Following they were randomly distributed in
ve groups using the parallel group method for randomization.
riefly, patients meeting inclusion criteria were selected by ana-

yzing the medical chart and their names were registered in a
aiting list. Afterwards, the patients were recruited and, after

ccordance with their participation, they were randomly allocated
nto one of the five groups of treatments. Each group received 12

eeks of the active treatments: atorvastatin (10 mg/day, n = 17);
stradiol monotherapy (2 mg/day, n = 19); estradiol associated
ith norethisterone acetate (NETA, 1 mg/day, n = 15); estradiol

2 mg/day) plus atorvastatin (10 mg/day, n = 18); and finally, estra-
iol (2 mg/day) plus NETA (1 mg/day) combined with atorvastatin
10 mg/day, n = 18). Further analysis was performed using three
roups, considering patients under hormone therapy (HT, n = 34),
nder monotherapy with atorvastatin (AT, n = 17) and patients
sing association of HT plus atorvastatin (HT + AT, n = 36). Every

oman assigned to each group completed the 12-week period of

reatment.
Before and after the treatments, the patients were evaluated for

erum concentrations of lipids, apoAI and apoB, and APOE and LXRA
& Molecular Biology 128 (2012) 139– 144

mRNA expression. The response to atorvastatin was monitored by
reduction of LDL cholesterol and other serum lipids. There were
no changes in trial outcomes during the study. ALT and CK were
determined in order to detect possible liver and muscle adverse
drug reactions, but such effects and others were not reported by
the patients therefore changes in methods were not necessary. The
study protocol was  approved by the local Ethical Committees (pro-
tocol number # 164) and informed consent was obtained from each
participant.

2.2. Biochemical measurements

After placebo (baseline period) and after each treatment, blood
samples were collected from all women after an overnight (12 h)
fast. Serum total cholesterol, HDL cholesterol and triglycerides
(TG) were measured by routine enzymatic colorimetric methods.
Plasma apoAI and apoB were measured by nephelometry. LDL and
very low-density lipoprotein (VLDL) cholesterol were estimated by
Friedewald formula [13]. Serum ALT and CK concentrations were
determined by kinetic methods.

2.3. DNA extraction and APOE genotyping

Genomic DNA was extracted from EDTA-anticoagulated whole
blood samples using a salting-out method [14]. APOE polymor-
phisms rs7412 and rs429358 that determinate the APOE alleles
�2, �3 and �4 were analyzed by polymerase chain reaction fol-
lowed by restriction fragment analysis (PCR-RFLP) as previously
described [15]. The accuracy of the genotyping was assessed by re-
analyzing all RFLP profiles by an independent investigator without
any change, and 15% of the samples were retested in order to avoid
mistyping errors.

2.4. Blood samples and isolation of mononuclear cells

EDTA-anticoagulated blood samples for mRNA expression were
obtained after baseline and each treatment. Peripheral blood
mononuclear cells (PBMC) were isolated and immediately used
for RNA extraction. Blood was diluted in phosphate buffered
saline (1:1) and this suspension was layered in Hystopaque-1077
(Sigma–Aldrich, MO,  USA) and centrifuged for 30 min  at 400 × g at
room temperature. PBMC were collected from the interphase and
immediately used for RNA extraction [16].

2.5. RNA isolation, cDNA synthesis and mRNA quantification

Total RNA was  extracted from PMBC using TRIzol® Reagent
(Invitrogen-Life Technologies, CA, USA) following the manufac-
turer’s suggested protocol. RNA was  dissolved in DEPC-treated
water and the concentration was measured by spectrophotom-
etry using the NanoDrop® (NanoDrop Technologies Inc., DE,
USA).

cDNA was produced from 1 �g of total RNA by SuperscriptTM

II Reverse Transcriptase (Invitrogen-Life Technologies, Carls-
bad, CA, USA) and APOE and LXRA mRNA was  measured by
TaqMan® quantitative PCR (qPCR) assay. Among six reference
genes tested [ubiquitin C (UBC), glyceraldehyde-3-phosphate dehy-
drogenase (GAPD), beta-2-microglobulin (B2M), hypoxanthine
phosphoribosyl-transferase I (HPRTI), succinate dehydrogenase
complex, subunit A (SDHA) and hydroxymethyl-bilane synthase
(HMBS)], HPRT1 was  chosen as the most stable according to the
analysis by GeNorm software [http://medgen.ugent.be/genorm].

The assays ID Hs00171168 m1 and Hs00173195 were used to
access the APOE and LXRA mRNA detection, respectively. The
sequence of primers and probes used for HRPT1 are described
as follow: forward, 5′-TGACACTGGCAAAACAATGCA-3′; reverse,

http://medgen.ugent.be/genorm
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Fig. 1. Serum lipid profile of postmenopausal women before and after hormone therapy, atorvastatin or combined treatments. Values are presented as mean ± SD and com-
pared  by paired t-test or Wilcoxon test for paired samples. HT, hormone treatment; AT, atorvastatin treatment; HT + AT, treatment with atorvastatin associated with hormone
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herapy;  TC, total cholesterol; LDL-c, low density lipoprotein cholesterol; HDL-c, hi
riglycerides; ApoAI, apolipoprotein AI; ApoB, apolipoprotein B.

′-GGTCCTTTTCACCAGCAAGCT-3′; and probe, VIC-CCTTGGTCAGG-
AGTAT-MGB/NFQ. The qPCR assays were carried out in 96 well
lates using a 7500 Fast Real-Time PCR system (Applied Biosystems,
A, USA).

.6. Statistical analysis

Statistical analyses were performed using the software
TATA/SE 8.0 for windows (StataCorp, TX, USA). Genotype and allele
requencies were estimated by gene counting. Categorical variables
ere compared by chi-square test. Continuous variables were pre-

iously tested for distribution using K–S test and skewed variables
ere logarithmically transformed and compared appropriately by

ndependent or paired t-test (two variables) or one-way ANOVA
three variables). Variables without normal distribution after log
ransformation were compared by Wilcoxon test (two variables) for
ndependent or pared samples or Kruskal–Wallis test (three vari-
bles). Tukey test was used for multiple comparisons when three
ariables had significant difference. Significance was considered at

 < 0.05.

. Results
Clinical characteristics, basal serum lipids and APOE allele fre-
uencies of postmenopausal women are presented in Table 1.
erum lipids at baseline and after treatments for HT, AT and
T + AT groups are shown in Fig. 1. No differences were observed

able 1
linical, biochemical and APOE polymorphism data of postmenopausal women.

Variable Data

Number of individuals 87
Age, years 57.6 ± 3.9
Body mass index, kg/m2 29.3 ± 4.9
Serum lipids, mg/dl

Total cholesterol 280 ± 44
Triglycerides 176 ± 87
HDL cholesterol 57 ± 12
LDL cholesterol 189 ± 40
VLDL cholesterol 35 ± 17
Apolipoprotein AI 149 ± 25
Apolipoprotein B 145 ± 24

APOE polymorphism
�2  allele 0.04
�3 allele 0.79
�4 allele 0.17

ontinuous variables are presented as mean ± SD. Genotyping data is presented
s  relative frequencies for �2, �3 or �4 allele. HDL, high density lipoprotein; LDL,
ow density lipoprotein; VLDL, very low density lipoprotein; APOE, apolipoprotein E
ene. Conversion factor to convert to International System of units (SI) are 0.02586
or  cholesterol (mmol/l), 0.01129 for triglycerides (mmol/l) and 0.01 for lipoproteins
g/l).
sity lipoprotein cholesterol; VLDL-c, very low density lipoprotein cholesterol; TG,

in basal serum lipids among HT, AT and HT + AT groups. Total
cholesterol, LDL cholesterol and apoB concentrations were reduced
after all treatments (p < 0.001). Triglycerides, VLDL cholesterol and
apoAI were reduced after atorvastatin treatment (p < 0.05), whereas
triglycerides and VLDL cholesterol were increased in HT group
(p = 0.01).

Relative frequencies for APOE �2/�3/�4  alleles are described in
Table 1. Due to the absence of �2�2 carriers and the low frequency
of �2�3 and �4�4 genotype carriers, these individuals were not
included in inferential analysis. Therefore, data from carriers of only
�3�3 and �3�4 were compared in this sample, where it was  not
possible to associate APOE genotypes with basal concentrations of
total, LDL, HDL and VLDL cholesterol and triglycerides, apoAI and
apoB at baseline and after treatments (p < 0.05; data not shown).
Similarly, no association was detected among APOE genotypes and
serum lipids after treatments when analyzed each group separately
(p < 0.05; data not shown).

APOE mRNA expression in PBMC was similar among the three
treatment groups at baseline (data not shown). APOE expression in
PBMC was  reduced after atorvastatin treatment (10 mg/day) in AT
group (p = 0.03), but it was not modified by HT or HT + AT treatments
(Fig. 2). Although LXRA expression was not affected by atorvastatin
or HT treatments (data not shown), it was  positively correlated
with APOE mRNA expression before (r = 0.45, p < 0.001) and after
treatments (r = 0.44, p < 0.001) as shown in Fig. 3.

PBMC APOE mRNA expression was not influenced by APOE
genotypes in postmenopausal women at baseline (Fig. 4A) and
treatments (data not shown). However, reduction of APOE mRNA

levels in response to atorvastatin was  more pronounced in women
carrying �3�3 genotypes (57% of mean reduction) than in �3�4
genotype carriers (33% of mean reduction) (Fig. 4B).

Fig. 2. APOE mRNA expression in mononuclear cells before and after hormone ther-
apy,  atorvastatin or combined treatments. Values are shown as dispersion plot with
bars  indicating median values and compared by Wilcoxon test for paired samples.
APOE,  apolipoprotein E gene; HT, hormone treatment; AT, atorvastatin treatment;
HT + AT, treatment with atorvastatin associated with hormone therapy. Basal and
treatment represent expression values before and after treatments.
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ig. 3. Correlation analysis between APOE and LXRA mRNA expression in mononu
eceptor � gene. Data are presented in a scatter plot and correlations between varia

. Discussion

Lipid-lowering effects of both HT and statins have been previ-
usly described in postmenopausal hypercholesterolemic women
17,18].  Moreover, association of both drugs has not demonstrated
dditional benefits over statin monotherapy in improving lipid
rofile and consequently in prevention of cardiovascular events
17,19]. However, this study did not aim to evaluate the lipid low-
ring effect of these drugs due to the small sample size. Therefore
his work focused mainly in the analysis of molecular mechanisms
egulating APOE expression and their relation with response to
reatments.

Relative frequencies of APOE alleles observed in this work were
imilar to early studies, which European descendant populations
ere analyzed [20,21],  even those reported APOE allele frequen-

ies in Brazilian European descendant samples that studied total

opulation [22,23] and only women [10,15] (�2 allele: 0.04–0.08;
3 allele: 0.70–0.83; and �4 allele: 0.11–0.23).

Several studies have evaluated the impact of apoE isoforms
n basal serum lipids and, despite some controversial data that

ig. 4. Relationship between APOE genotypes and mRNA expression in mononuclear
ells at baseline and in response to atorvastatin treatment. Values are presented as
ispersion plot and compared by Wilcoxon test for independent samples (�3�3 vs
3�4  in total population in panel A) or Wilcoxon test for paired samples (basal vs
reatment in panel B). APOE, apolipoprotein E gene.
cells at baseline and after treatments. APOE, apolipoprotein E gene; LXRA, liver X
ere evaluated using spearman coefficient.

reported no differences on LDL cholesterol levels among APOE
genotypes in hypercholesterolemic individuals [22,24],  �2 allele
is classically associated with lower total and LDL cholesterol and
apoB whereas �4 allele has demonstrated to have opposite effects
in comparison with the common allele �3 [9].  These differences
could be explained by structural and biophysical properties of apoE
isoforms [25].

Influence of APOE genotypes on basal serum lipids was also eval-
uated in postmenopausal women. HT nonuser women carrying �4
alelle had higher LDL cholesterol than women with �3 or �2 alelles
[10]. In our study, no differences on basal lipids or lipid-change
after treatments according to APOE genotypes, however associa-
tion of genotypes with plasma lipids and response was not the
primary objective of this study, because the limited sample ana-
lyzed that was meanly focused in expression analysis. The small
size of the sample is an important limitation of our study, which
could restrict the power of statistical inference tests and then to
hide possible associations between genotypes and basal plasma
lipids or response to pharmaceutical interventions.

Conclusions from studies that investigated interaction between
APOE genotypes and response to HT and statins in postmenopausal
women remain controversial. Concerning HT response, whereas
Tsuda et al. described that in Japanese women �2 and �3 allele
carriers had better response to HT in reduction of total and LDL
cholesterol than those women with �4 allele [11], in Brazilian
women the presence of �4 allele may  benefit more from HT than
women with other APOE genotypes [10]. Moreover, three month
HT induced more accentuated increase of triglycerides in Span-
ish women carrying �2 allele, but no differences were observed
on total or LDL cholesterol variation [26]. On the contrary, no dif-
ference was  observed according to APOE genotypes on change of
serum lipid profile when long-term HT was analyzed after five years
follow-up [27]. Regarding statin response, despite some results are
contradictory and so far inconclusive, in general APOE �3 homozy-
gotes get a larger benefit from statin than APOE �4 carriers in terms
of LDL decrease, whereas those with the �2 allele have an ever
greater reduction in LDL cholesterol during statin medication [9].
Nevertheless, it merits to be mentioned that several studies demon-
strated no affect for the �2/�3/�4  polymorphism on lipid profile in
response to statin treatment [28,29]. However, studies from mRNA
expression analysis in postmenopausal women  under HT or statin
therapy are scarce and they are important to provide additional
information helping to elucidate the contribution of APOE to lipid-
lowering response in this population.

The main contribution of our work is the measurement of APOE
mRNA levels according to APOE genotypes and the exploration of
gene expression in response to HT and atorvastatin treatments.
Hepatocytes and macrophages are adequate samples to evaluate
cholesterol transport and of lipid-lowering drugs effects, however
collecting these specimens is not very convenient in human sub-
jects. We  and others [30] have analyzed mRNA expression using
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BMC that would became macrophages in peripheral tissues. How-
ver, modulation of APOE expression by atorvastatin may  not be
imilar in all tissues and these characteristics could be a limitation
n the interpretation of our results.

Although there are only few studies, influence of statin treat-
ent on APOE expression has been previously explored using

n vitro an in vivo models. Using an in vitro approach, Llaverias
nd co-workers [31] reported that 24 h of treatment with 5 �M of
torvastatin reduces APOE mRNA and protein expression in THP-1
erived macrophages. On the contrary, the same treatment did not
lter APOE expression using lipid loaded macrophages [32].

In humans, lower APOE mRNA expression was  detected in PBMC
rom diabetic patients with hyperlipidemia when compared to
ealthy controls, but there was no differences between hyper-

ipidemic diabetic patients who had not received lipid-lowering
reatment and those that were treated with 5–10 mg/day of sim-
astatin [30]. These results differ from the down-regulation of APOE
xpression by atorvastatin reported in the present work, however
ome differences in the model of study could explain this diver-
ence. First, the statin effects may  vary according to the dose and
ype of statin used and it is known that atorvastatin has more potent
ffect than simvastatin, when used at similar dose. On the other
and, diabetic patients evaluated by Guan et al. diverge patho-
hysiologically from our sample of postmenopausal women with
ypercholesterolemia.

A possible mechanism that may  explain the reduction of APOE
RNA is related to the inhibitory effect of statins on the synthesis

f oxysterols, which are LXR ligands and would lead to a decreased
xpression of LXR target genes. LXR regulates APOE expression in
acrophages and adipocytes though direct interaction with two

uplicated enhancer elements placed downstream of the gene and
esponsive to LXRs [12]. Besides the up regulation of gene expres-
ion, it was demonstrated that LXR activation by incubating with a
XR agonist increases apoE secretion in HepG2 cells [33].

In our sample, although no reduction of LXRA expression by ator-
astatin was detected, positive correlation between APOE and LXRA
xpression was observed before and after treatments. However, we
nly measured mRNA levels of LXRA and the transcriptional activity
f LXR� by interacting with the APOE promoter was  not evalu-
ted. Additionally, APOE mRNA reduction by atorvastatin was APOE
enotype dependant in our sample that could give some additional
xplanation of influence of genotypes on variation in response to
tatins. However further studies using a larger sample size and if
ossible more adequate cellular models are necessary.

HT effects on APOE expression have been investigated mainly
n brain tissues where HT seems to confer neuronal protection and
egeneration [34]. Estradiol treatment in cultured neurons causes

 rapid (4 h) elevation of apoE [35]. Additionally, when ovariec-
omized mice were continuously treated with estradiol [36], APOE
p-regulation at acute treatment (five days) was observed in brain
issues, but this effect was lacked with longer estradiol exposure
14–49 days). On the other hand, estradiol administration increased
epatic apoE levels in mice without affecting APOE mRNA [37]. No
ifferences on PBMC APOE mRNA were detected after HT treatment

n our study, however according with above mentioned early find-
ngs long term treatment and posttranscriptional regulation could
xplain this fact. Moreover, an additional limitation of our work
s the measurement of mRNA levels but not apoE protein, which

ould have enable us to elucidate posttranscriptional regulation
f APOE in postmenopausal women.
. Conclusion

APOE mRNA expression in PBMC was down-regulated by ator-
astatin in a process probably mediated by LXR� though reduction

[

& Molecular Biology 128 (2012) 139– 144 143

of  oxysterols and this was influenced by APOE genotypes, never-
theless HT and HT associated to atorvastatin did not influence APOE
expression.
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