4,986 research outputs found

    Application of NASTRAN/COSMIC in the analysis of ship structures to underwater explosion shock

    Get PDF
    The application of NASTRAN/COSMIC in predicting the transient motion of ship structures to underwater, non-contact explosions is discussed. Examples illustrate the finite element models, mathematical formulations of loading functions and, where available, comparisons between analytical and experimental results

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Orbifold projection in supersymmetric QCD at N_f\leq N_c

    Get PDF
    Supersymmetric orbifold projection of N=1 SQCD with relatively small number of flavors (not larger than the number of colors) is considered. The purpose is to check whether orbifolding commutes with the infrared limit. On the one hand, one considers the orbifold projection of SQCD and obtains the low-energy description of the resulting theory. On the other hand, one starts with the low-energy effective theory of the original SQCD, and only then perfoms orbifolding. It is shown that at finite N_c the two low-energy theories obtained in these ways are different. However, in the case of stabilized run-away vacuum these two theories are shown to coincide in the large N_c limit. In the case of quantum modified moduli space, topological solitons carrying baryonic charges are present in the orbifolded low-energy theory. These solitons may restore the correspondence between the two theories provided that the soliton mass tends to zero in the large N_c limit.Comment: 10 pages; misprint corrected, reference adde

    Riparian buffer systems for Oklahoma

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311.Biosystems and Agricultural Engineerin

    51 Eri and GJ 3305: A 10-15 Myr old binary star system at 30 parsecs

    Full text link
    Following the suggestion of Zuckerman et al. (2001, ApJ, 562, L87), we consider the evidence that 51 Eri (spectral type F0) and GJ 3305 (M0), historically classified as unrelated main sequence stars in the solar neighborhood, are instead a wide physical binary system and members of the young beta Pic moving group (BPMG). The BPMG is the nearest (d < 50 pc) of several groups of young stars with ages around 10 Myr that are kinematically convergent with the Oph-Sco-Cen Association (OSCA), the nearest OB star association. Combining SAAO optical photometry, Hobby-Eberly Telescope high-resolution spectroscopy, Chandra X-ray data, and UCAC2 catalog kinematics, we confirm with high confidence that the system is indeed extremely young. GJ 3305 itself exhibits very strong magnetic activity but has rapidly depleted most of its lithium. The 51 Eri/GJ 3305 system is the westernmost known member of the OSCA, lying 110 pc from the main subgroups. The system is similar to the BPMG wide binary HD 172555/CD -64d1208 and the HD 104237 quintet, suggesting that dynamically fragile multiple systems can survive the turbulent environments of their natal giant molecular cloud complexes, while still being imparted high dispersion velocities. Nearby young systems such as these are excellent targets for evolved circumstellar disk and planetary studies, having stellar ages comparable to that of the late phases of planet formation.Comment: 27 pages, 7 figures. Accepted for publication in the Astronomical Journal. For a version with high resolution figures, see http://www.astro.psu.edu/users/edf/51Eri.pd

    Floods of June 2012 in Northeastern Minnesota

    Get PDF
    U.S. Geological Survey Scientific Investigations Report 2012–5283. Reston, VA: U.S. Geological Survey.This report is a summary description of the 2012 flooding in the Fond du Lac region of Lake Superior from a meteorological and hydrologic perspective. The report notes that the extent and depth of flooding in communities can be used for flood recovery efforts. Key points are reproduced below. Abstract: “During June 19–20, 2012, heavy rainfall, as much as 10 inches locally reported, caused severe flooding across northeastern Minnesota. The floods were exacerbated by wet antecedent conditions from a relatively rainy spring, with May 2012 as one of the wettest Mays on record in Duluth. The June 19–20, 2012, rainfall event set new records in Duluth, including greatest 2-day precipitation with 7.25 inches of rain. The heavy rains fell on three major watersheds: the Mississippi Headwaters; the St. Croix, which drains to the Mississippi River; and Western Lake Superior, which includes the St. Louis River and other tributaries to Lake Superior. Widespread flash and river flooding that resulted from the heavy rainfall caused evacuations of residents, and damages to residences, businesses, and infrastructure. In all, nine counties in northeastern Minnesota were declared Federal disaster areas as a result of the flooding. Peak-of-record streamflows were recorded at 13 U.S. Geological Survey stream gages as a result of the heavy rainfall. Flood-peak gage heights, peak streamflows, and annual exceedance probabilities were tabulated for 35 U.S. Geological Survey stream gages. Flood-peak streamflows in June 2012 had annual exceedance probabilities estimated to be less than 0.002 (0.2 percent; recurrence interval greater than 500 years) for five stream gages, and between 0.002 and 0.01 (1 percent; recurrence interval greater than 100 years) for four stream gages. High-water marks were identified and tabulated for the most severely affected communities of Barnum (Moose Horn River), Carlton (Otter Creek), Duluth Heights neighborhood of Duluth (Miller Creek), Fond du Lac neighborhood of Duluth (St. Louis River), Moose Lake (Moose Horn River and Moosehead Lake), and Thomson (Thomson Reservoir outflow near the St. Louis River). Flood-peak inundation maps and water-surface profiles were produced for these six severely affected communities. The inundation maps were constructed in a geographic information system by combining high-water-mark data with high-resolution digital elevation model data. The flood maps and profiles show the extent and depth of flooding through the communities and can be used for flood response and recovery efforts by local, county, State, and Federal agencies.

    Triplet energy differences and the low lying structure of Ga 62

    Get PDF
    Background: Triplet energy differences (TED) can be studied to yield information on isospin-non-conserving interactions in nuclei. Purpose: The systematic behavior of triplet energy differences (TED) of T=1, J\u3c0=2+ states is examined. The A=62 isobar is identified as having a TED value that deviates significantly from an otherwise very consistent trend. This deviation can be attributed to the tentative assignments of the pertinent states in Ga62 and Ge62. Methods: An in-beam \u3b3-ray spectroscopy experiment was performed to identify excited states in Ga62 using Gamma-Ray Energy Tracking In-Beam Nuclear Array with the S800 spectrometer at NSCL using a two-nucleon knockout approach. Cross-section calculations for the knockout process and shell-model calculations have been performed to interpret the population and decay properties observed. Results: Using the systematics as a guide, a candidate for the transition from the T=1, 2+ state is identified. However, previous work has identified similar states with different J\u3c0 assignments. Cross-section calculations indicate that the relevant T=1, 2+ state should be one of the states directly populated in this reaction. Conclusions: As spins and parities were not measurable, it is concluded that an unambiguous identification of the first T=1, 2+ state is required to reconcile our understanding of TED systematics
    corecore