2,607 research outputs found

    Optimizing Engagement in the Acute Care Setting: A Nurse Driven Staffing Model

    Get PDF
    Health care is on the threshold of major reform. Central to this reform will be the ability to maximize patient outcomes and resource allocation. The delivery of nursing care is essential to these concepts. Nursing care delivery impacts both patient outcomes and labor costs. Every aspect of care delivery has changed over time: length of stay, acuity, payment methodologies, documentation, technology, and regulatory requirements. Yet the model by which we allocate resources to the bedside is based on an archaic notion and forecasting model around one variable. The development of effective nurse staffing strategies will ensure those delivering care are engaged and able to meet the present day demands. Understanding the complex environment in which care is being delivered and the increasing demands put on those delivering care, Legacy Health, in Portland, Oregon, has embarked on an innovative project to redesign their nurse staffing model; building on current advancements in technology and more importantly engaging those closest to the work

    Bulgeless Galaxies and their Angular Momentum Problem

    Full text link
    The specific angular momentum of Cold Dark Matter (CDM) halos in a Λ\LambdaCDM universe is investigated. Their dimensionless specific angular momentum λâ€Č=j2VvirRvir\lambda'=\frac{j}{\sqrt{2}V_{vir} R{vir}} with VvirV_{vir} and RvirR_{vir} the virial velocity and virial radius, respectively depends strongly on their merging histories. We investigate a set of Λ\LambdaCDM simulations and explore the specific angular momentum content of halos formed through various merging histories. Halos with a quiet merging history, dominated by minor mergers and accretion until the present epoch, acquire by tidal torques on average only 2% to 3% of the angular momentum required for their rotational support (λâ€Č=0.02\lambda'=0.02). This is in conflict with observational data for a sample of late-type bulgeless galaxies which indicates that those galaxies reside in dark halos with exceptionally high values of λâ€Č≈0.06−0.07\lambda' \approx 0.06-0.07. Minor mergers and accretion preserve or slowly increase the specific angular momentum of dark halos with time. This mechanism is however not efficient enough in order to explain the observed spin values for late-type dwarf galaxies. Energetic feedback processes have been invoked to solve the problem that gas loses a large fraction of its specific angular momentum during infall. Under the assumption that dark halos hosting bulgeless galaxies acquire their mass via quiescent accretion, our results indicate yet another serious problem: the specific angular momentum gained during the formation of these objects is not large enough to explain their observed rotational properties,even if no angular momentum would be lost during gas infall.Comment: 4 pages, 3 figures. To appear in September 1, 2004, issue of ApJ Letter

    Effect of arbuscular mycorrhizal fungal inoculation on growth, and nutrient uptake of the two grass species, Leptochloa fusca (L.) Stapf and Sporobolus robustus Kunth, under greenhouse conditions

    Get PDF
    The aim of our work was to assess the effect of inoculation with three arbuscular mycorrhizal fungi (AMF) (Rhizoglomus aggregatum (N.C. Schenck and G.S. Sm.) Sieverd., G.A. Silva and Oeh., Funneliformis mosseae (T.H. Nicolson and Gerd.) C. Walker and A. SchĂŒssler. and Rhizoglomus intraradices (N.C. Schenck and G.S. Sm.) Sieverd., G.A. Silva and Oehl.), and a mixed inoculum of these AMF on root colonization, biomass production, mycorrhizal dependency (MD) and shoot mineral contents of two salt tolerant grasses Leptochloa fusca L. Stapf and Sporobolus robusts Kunth. After four months of growth in a sterilized soil and greenhouse conditions, grasses inoculated with AMF showed significantly higher total biomass production than non-inoculated seedlings. MD and shoot mineral contents (especially P) varied with AMF host plants. Maximum values of MD (13%) were observed in L. fusca and S. robustus seedlings when inoculated with R. intraradices and F. mosseae, respectively. Only P contents were higher in the S. robustus/mixed-AMF combinations than the other treatments. These results demonstrate the potential benefits in our experimental conditions of AM inoculation for improving growth and P acquisition particularly in the L. fusca/ F. mosseae and S. robustus/mixed-AMF combinations.Key words: Grass species, symbiosis, mycorrhizal dependency, mineral nutrition

    Macroscopic Discontinuous Shear Thickening vs Local Shear Jamming in Cornstarch

    Full text link
    We study the emergence of discontinuous shear-thickening (DST) in cornstarch, by combining macroscopic rheometry with local Magnetic Resonance Imaging (MRI) measurements. We bring evidence that macroscopic DST is observed only when the flow separates into a low-density flowing and a high-density jammed region. In the shear-thickened steady state, the local rheology in the flowing region, is not DST but, strikingly, is often shear-thinning. Our data thus show that the stress jump measured during DST, in cornstach, does not capture a secondary, high-viscosity branch of the local steady rheology, but results from the existence of a shear jamming limit at volume fractions quite significantly below random close packing.Comment: To be published in PR

    Yield stress and shear-banding in granular suspensions

    Get PDF
    We study the emergence of a yield stress in dense suspensions of non-Brownian particles, by combining local velocity and concentration measurements using Magnetic Resonance Imaging with macroscopic rheometric experiments. We show that the competition between gravity and viscous stresses is at the origin of the development of a yield stress in these systems at relatively low volume fractions. Moreover, it is accompanied by a shear banding phenomenon that is the signature of this competition. However, if the system is carefully density matched, no yield stress is encountered until a volume fraction of 62.7 0.3%

    Some Global Characteristics of the Galactic Globular Cluster System

    Full text link
    The relations between the luminosities MVM_{V}, the metallicities [Fe/H][Fe/H], the Galactocentric radii RR, and the central concentration indices cc of Galactic globular clusters are discussed. It is found that the most luminous clusters rarely have collapsed cores. The reason for this might be that the core collapse time scales for such populous clusters are greater than the age of the Galaxy. Among those clusters, for which the structure has not been modified by core collapse, there is a correlation between central concentration and integrated luminosity, in the sense that the most luminous clusters have the strongest central concentration. The outermost region of the Galaxy with R>10R>10 kpc was apparently not able to form metal-rich ([Fe/H]>−1.0)([Fe/H]>-1.0) globular clusters, whereas such clusters (of which Ter 7 is the prototype) were able to form in some nearby dwarf spheroidal galaxies. It is not yet clear how the popular hypothesis that globular clusters were initially formed with a single power law mass spectrum can be reconciled with the observation that both (1) Galactic globular clusters with R>80R>80 kpc, and (2) the globulars associated with the Sagittarius dwarf, appear to have bi-modal luminosity functions.Comment: 15 pages, 1 figur

    Star Formation, Metallicity and Dust Properties Derived from the SAPM Galaxy Survey Spectra

    Full text link
    We have derived star formation rates (SFRs), gas-phase oxygen abundances and effective dust absorption optical depths for a sample of galaxies drawn from the Stromlo-APM redshift survey using the new Charlot and Longhetti (2001; CL01) models, which provide a physically consistent description of the effects of stars, gas and dust on the integrated spectra of galaxies. Our sample consists of 705 galaxies with measurements of the fluxes and equivalent widths of Halpha, [OII], and one or both of [NII] and [SII]. For a subset of the galaxies, 60 and 100 micron IRAS fluxes are available. We compare the star formation rates derived using the models with those derived using standard estimators based on the Halpha, the [OII] and the far-infrared luminosities of the galaxies. The CL01 SFR estimates agree well with those derived from the IRAS fluxes, but are typically a factor of ~3 higher than those derived from the Halpha or the [OII] fluxes, even after the usual mean attenuation correction of A_Halpha=1 mag is applied to the data. We show that the reason for this discrepancy is that the standard Halpha estimator neglects the absorption of ionizing photons by dust in HII regions and the contamination of Halpha emission by stellar absorption. We also use our sample to study variations in star formation and metallicity as a function of galaxy absolute bJ magnitude. For this sample, the star formation rate per unit bJ luminosity is independent of magnitude. The gas-phase oxygen abundance does increase with bJ luminosity, although the scatter in metallicity at fixed magnitude is large.Comment: 17 pages, 8 figures, accepted for publication in MNRA

    The Angular Momentum Distribution of Gas and Dark Matter in Galactic Halos

    Full text link
    (Abridged) We report results of a series of non radiative N-body/SPH simulations in a LCDM cosmology. We find that the spin of the baryonic component is on average larger than that of the dark matter (DM) component and we find this effect to be more pronounced at lower redshifts. A significant fraction f of gas has negative angular momentum and this fraction is found to increase with redshift. We describe a toy model in which the tangential velocities of particles are smeared by Gaussian random motions. This model is successful in explaining some of the angular momentum properties. We compare and contrast various techniques to determine the angular momentum distributions (AMDs). We show that broadening of velocity dispersions is unsuitable for making comparisons between gas and DM. We smooth the angular momentum of the particles over a fixed number of neighbors. We find that an analytical function based on gamma distribution can be used to describe a wide variety of profiles, with just one parameter \alpha. The distribution of the shape parameter α\alpha for both gas and DM follows roughly a log-normal distribution. The mean and standard deviation of log(\alpha) for gas is -0.04 and 0.11 respectively. About 90-95% of halos have \alpha<1.3, while exponential disks in NFW halos would require 1.3<\alpha<1.6. This implies that a typical halo in simulations has an excess of low angular momentum material as compared to that of observed exponential disks, a result which is consistent with the findings of earlier works. \alpha for gas is correlated with that of DM but they have a significant scatter =1.09 \pm 0.2. \alpha_Gas is also biased towards slightly higher values compared to \alpha_DM.Comment: 19 pages, 32 figures (replaced to correct a typo in the authors field in the above line, paper unchanged
    • 

    corecore