(Abridged) We report results of a series of non radiative N-body/SPH
simulations in a LCDM cosmology. We find that the spin of the baryonic
component is on average larger than that of the dark matter (DM) component and
we find this effect to be more pronounced at lower redshifts. A significant
fraction f of gas has negative angular momentum and this fraction is found to
increase with redshift. We describe a toy model in which the tangential
velocities of particles are smeared by Gaussian random motions. This model is
successful in explaining some of the angular momentum properties. We compare
and contrast various techniques to determine the angular momentum distributions
(AMDs). We show that broadening of velocity dispersions is unsuitable for
making comparisons between gas and DM. We smooth the angular momentum of the
particles over a fixed number of neighbors. We find that an analytical function
based on gamma distribution can be used to describe a wide variety of profiles,
with just one parameter \alpha. The distribution of the shape parameter
α for both gas and DM follows roughly a log-normal distribution. The
mean and standard deviation of log(\alpha) for gas is -0.04 and 0.11
respectively. About 90-95% of halos have \alpha<1.3, while exponential disks in
NFW halos would require 1.3<\alpha<1.6. This implies that a typical halo in
simulations has an excess of low angular momentum material as compared to that
of observed exponential disks, a result which is consistent with the findings
of earlier works. \alpha for gas is correlated with that of DM but they have a
significant scatter =1.09 \pm 0.2. \alpha_Gas is also
biased towards slightly higher values compared to \alpha_DM.Comment: 19 pages, 32 figures (replaced to correct a typo in the authors field
in the above line, paper unchanged