2,281 research outputs found

    Distribution of Pressure Over Model of the Upper Wing and Aileron of a Fokker D-VII Airplane

    Get PDF
    This report describes tests made for the purpose of determining the distribution of pressure over a model of the tapered portion of the upper wing and the aileron of a Fokker D-VII Airplane. Normal pressures were measured simultaneously at 74 points distributed over the wing and aileron. Tests were made throughout the useful range of angles of attack with aileron setting ranging from -20 degrees to +20 degrees. The results are presented graphically. It was found that the pressure distribution along the chord is in general similar to that of thick tapered airfoils previously tested. The maximum resultant pressure recorded was five times the dynamic pressure. The distribution of the air load along the span may be assumed to be uniform for design purposes. Aileron displacements affect the pressures forward to the leading edge of the wing and may increase the air load on the outer portion of the wing by a considerable amount. With the wing at large angles of attack, the overhanging portion of the aileron creates usually a burble flow and therefore a large drag. The balance reduces the control stick forces at small angles of attack for all aileron displacements. At large angles of attack it does this for small displacements only. With the airplane at its maximum speed, an angle of attack of 18 degrees, and a down aileron displacement of 20 degrees, the bending moment tending to break off the overhanging portion of the aileron will be greater than that caused by a uniform static load of 35 pounds per square foot

    Pressure Distribution Tests on PW-9 Wing Models Showing Effects of Biplane Interference

    Get PDF
    In this report tests are described in which the distribution of pressures over models of the wings of the PW-9 Airplane was investigated. The wing models were tested individually and in the biplane combination. The investigation was conducted in the atmospheric wind tunnel of the National Advisory Committee for Aeronautics. It is concluded in this paper that the effect of biplane interference on the pressures on the wings is practically confined to the lower surface of the upper wing and the upper surface of the lower wing; that the overhanging portion of the upper wing is not greatly affected by the presence of the lower wing; and that a slight washing at the center section of the upper wing satisfactorily compensates for a reduced chord at this section (providing the airfoil section is not mutilated) and prevents a large reduction in the normal force over this portion of the wing

    Probing the Sensitivity of Electron Wave Interference to Disorder-Induced Scattering in Solid-State Devices

    Get PDF
    The study of electron motion in semiconductor billiards has elucidated our understanding of quantum interference and quantum chaos. The central assumption is that ionized donors generate only minor perturbations to the electron trajectories, which are determined by scattering from billiard walls. We use magnetoconductance fluctuations as a probe of the quantum interference and show that these fluctuations change radically when the scattering landscape is modified by thermally-induced charge displacement between donor sites. Our results challenge the accepted understanding of quantum interference effects in nanostructures.Comment: 8 pages, 5 figures, Submitted to Physical Review

    Multimodal perioperative pain protocol for gynecologic oncology laparotomy is associated with reduced hospital length of stay and improved patient pain scores

    Get PDF
    The primary objective was to evaluate the impact of a multimodal perioperative pain regimen on length of hospital stay for patients undergoing laparotomy with a gynecologic oncologist

    Quantification of T- and B-cell immune receptor distribution diversity characterizes immune cell infiltration and lymphocyte heterogeneity in clear cell renal cell carcinoma

    Get PDF
    Immune-modulating systemic therapies are often used to treat advanced cancer such as metastatic clear cell renal cell carcinoma (ccRCC). Used alone, sequence-based biomarkers neither accurately capture patient dynamics nor the tumor immune microenvironment. To better understand the tumor ecology of this immune microenvironment, we quantified tumor infiltration across two distinct ccRCC patient tumor cohorts using complementarity determining region-3 (CDR3) sequence recovery counts in tumor-infiltrating lymphocytes and a generalized diversity index (GDI) for CDR3 sequence distributions. GDI can be understood as a curve over a continuum of diversity scales which allows sensitive characterization of distributions to capture sample richness, evenness, and subsampling uncertainty, along with other important metrics that characterize tumor heterogeneity. For example, richness quantified the total unique sequence count, while evenness quantified similarities across sequence frequencies. Significant differences in receptor sequence diversity across gender and race revealed that patients with larger and more clinically aggressive tumors had increased richness of recovered tumoral CDR3 sequences, specifically in those from T-cell receptor alpha and B-cell immunoglobulin lambda light chain. The GDI inflection point (IP) allowed for a novel and robust measure of distribution evenness. High IP values associated with improved overall survival, suggesting that normal-like sequence distributions lead to better outcomes. These results propose a new quantitative tool that can be used to better characterize patient-specific differences related to immune cell infiltration, and to identify unique characteristics of tumor-infiltrating lymphocyte heterogeneity in ccRCC and other malignancies

    Rapid sea level rise and ice sheet response to 8,200-year climate event

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L20603, doi:10.1029/2007GL031318.The largest abrupt climatic reversal of the Holocene interglacial, the cooling event 8.6–8.2 thousand years ago (ka), was probably caused by catastrophic release of glacial Lake Agassiz-Ojibway, which slowed Atlantic meridional overturning circulation (AMOC) and cooled global climate. Geophysical surveys and sediment cores from Chesapeake Bay reveal the pattern of sea level rise during this event. Sea level rose ~14 m between 9.5 to 7.5 ka, a pattern consistent with coral records and the ICE-5G glacio-isostatic adjustment model. There were two distinct periods at ~8.9–8.8 and ~8.2–7.6 ka when Chesapeake marshes were drown as sea level rose rapidly at least ~12 mm yr−1. The latter event occurred after the 8.6–8.2 ka cooling event, coincided with extreme warming and vigorous AMOC centered on 7.9 ka, and may have been due to Antarctic Ice Sheet decay.Cronin, Willard, Thunell, Berke supported by USGS Earth Surface Dynamics Program; Vogt and Pohlman by Office of Naval Research; Halka by MGS
    • …
    corecore