459 research outputs found

    The spectrum of MEFV gene mutations and genotype-phenotype correlation in Egyptian patients with familial Mediterranean fever

    Get PDF
    Background: Familial Mediterranean fever (FMF) is an autosomal recessive disease mainly affecting subjects of the Mediterranean origin. It is an auto-inflammatory periodic disorder that is caused by mutations in the Mediterranean fever gene (MEFV) located on chromosome 16.Methods: The current study was designed to assess the prevalence and frequency of different MEFV gene mutations among 104 FMF clinically diagnosed Egyptian patients and to evaluate the change extent in the values of some biochemical markers (ESR, CRP, Fibrinogen-C, SAA and IL1) in different participants with different FMF severity scores.Results: According to allele status 28 patients (27%) were homozygous mutation carriers, 38 (36.5%) were with compound heterozygous mutations and 38 (36.5%) were identified as heterozygous for one of the studied mutations. Of the studied mutations, M694I, E148Q, V726A, M680I, and M694V accounted for 28.1%, 26.8%, 16.9%, and 11.3% of mutations respectively. The R761H and P369S mutations were rarely encountered mutations (1.4%). The clinical features with M694I were associated with more severe clinical course. There is a drastic elevation in the levels of estimated parameters as their levels were increased as long as the severity of the disease increased.Conclusions: The diagnosis of FMF cannot be performed on the basis of genetic testing or clinical criteria alone. So, we recommended the combination between clinical and molecular profiling for FMF diagnosis and scoring

    Effects of the Higashi-Nihon Earthquake: Posttraumatic Stress, Psychological Changes, and Cortisol Levels of Survivors

    Get PDF
    On March 11, 2011, the Pacific side of Japan’s northeast was devastated by an earthquake and tsunami. For years, many researchers have been working on ways of examining the psychological effects of earthquakes on survivors in disaster areas who have experienced aftershocks, catastrophic fires, and other damage caused by the earthquake. The goal of this study is to examine scores on psychological measures and salivary cortisol level in these individuals both before and three months after the earthquake. The participants had been measured for these variables before the earthquake. After the earthquake, we carried out PTSD screening using CAPS for participants for another experiment, and then again conducted the aforementioned tests. We collected saliva samples from all survivors. Our results show that social relationship scores on the WHO-QOL26, negative mood scores of the WHO-SUBI, total GHQ score, POMS confusion scores, and CMI emotional status score after the earthquake showed scores indicating significantly decreased compared to before the earthquake. On the other hand, salivary cortisol levels after the earthquake was significantly increased compared to before the earthquake. Moreover, the result of a multiple regression analysis found that negative mood score on the WHO-SUBI and social relationship score on the WHO-QOL26 were significantly related to salivary cortisol levels. Our results thus demonstrate that several psychological stress induced by the earthquake was associated with an increase in salivary cortisol levels. These results show similar findings to previous study. We anticipate that this study will provide a better understanding of posttraumatic responses in the early stages of adaptation to the trauma and expand effective prevention strategies and countermeasures for PTSD

    Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression

    Get PDF
    An important application of fiber-reinforced polymer (FRP) composites is as a confining material for concrete, both in the seismic retrofit of existing reinforced concrete columns and in the construction of concrete-filled FRP tubes as earthquake-resistant columns in new construction. The reliable design of these structural members against earthquake-induced forces necessitates a clear understanding of the stress-strain behavior of FRP-confined concrete under load cycles. This paper presents the results of an experimental study on the behavior of FRP-confined normal- and high-strength concrete under axial compression. A total of 24 aramid and carbon FRP-confined concrete cylinders with different concrete strengths and FRP jacket thicknesses were tested under monotonic and cyclic loading. Examination of the test results has led to a number of significant conclusions in regards to both the trend and ultimate condition of the axial stress-strain behavior of FRP-confined concrete. These results are presented, and a discussion is provided on the influence of the main test parameters in the observed behaviors. The results are also compared with two existing cyclic axial stress-strain models for FRP-confined concrete. © 2012 American Society of Civil Engineers.Togay Ozbakkaloglu and Emre Aki

    Expression and localisation of Akt-1, Akt-2 and Akt-3 correlate with clinical outcome of prostate cancer patients

    Get PDF
    We investigated the correlation between the expression and localisation of Akt-1, Akt-2, Akt-3, phospho-Akt proteins and the clinicopathological parameters in 63 prostate cancer specimens. More than 60% of cancerous tissues overexpressed Akt-1, Akt-2 or Akt-3. Cytoplasmic Akt-1 expression was correlated with a higher risk of postoperative prostate-specific antigen (PSA) recurrence and shorter PSA recurrence interval. Cytoplasmic Akt-2 did not show any significant correlation with clinicopathological parameters predicting outcomes. Cytoplasmic Akt-3 was associated with hormone-refractory disease progression and extracapsular invasion. Nuclear Akt-1 and Akt-2 expression were correlated with favourable outcome parameters such as absence of lymph node and perineural invasion. Kaplan–Meier analysis and Cox regression model also showed that Akt-1 and Akt-2, but not Akt-3 or phospho-Akt was associated with a significantly higher risk of PSA recurrence. In contrast, nuclear Akt-1 was significantly associated with a lower risk of PSA recurrence. Multivariate analysis revealed that clinical stage, Gleason score and the combined cytoplasmic nuclear Akt-1 marker in cancerous tissues were significant independent prognostic factors of PSA recurrence. This is the first report demonstrating in patients with prostate cancer and the particular role of Akt-1 isoform expression as a prognostic marker depending of its localisation

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation

    Get PDF
    The second extracellular loop (EL2) of rhodopsin forms a cap over the binding site of its photoreactive 11-cis retinylidene chromophore. A crucial question has been whether EL2 forms a reversible gate that opens upon activation or acts as a rigid barrier. Distance measurements using solid-state 13C NMR spectroscopy between the retinal chromophore and the β4 strand of EL2 show that the loop is displaced from the retinal binding site upon activation, and there is a rearrangement in the hydrogen-bonding networks connecting EL2 with the extracellular ends of transmembrane helices H4, H5 and H6. NMR measurements further reveal that structural changes in EL2 are coupled to the motion of helix H5 and breaking of the ionic lock that regulates activation. These results provide a comprehensive view of how retinal isomerization triggers helix motion and activation in this prototypical G protein-coupled receptor. © 2009 Nature America, Inc. All rights reserved

    Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action

    Get PDF
    Background Magnolol, a plant lignan isolated from the bark and seed cones of Magnolia officinalis, has been shown to have chemopreventive effects on chemically-induced skin cancer development. The objectives of this investigation are to study the anticarcinogenic effects of magnolol on UVB-induced skin tumor development in SKH-1 mice, a model relevant to humans, and determine the possible role of apoptosis and cell cycle arrest involved in the skin tumor development. Methods UVB-induced skin carcinogenesis model in SKH-1 mice was used for determining the preventive effects of magnolol on skin cancer development. Western blottings and flow cytometric analysis were used to study the effects of magnolol on apoptosis and cell cycle. Results Magnolol pretreated groups (30, 60 ÎĽ g) before UVB treatments (30 mJ/cm2, 5 days/week) resulted in 27-55% reduction in tumor multiplicity as compared to control group in SKH-1 mice. Magnolol pretreatment increased the cleavage of caspase-8 and poly-(-ADP-ribose) polymerase (PARP), increased the expression of p21, a cell cycle inhibitor, and decreased the expression of proteins involved in the G2/M phase of cell cycle in skin samples from SKH-1 mice. Treatment of A431 cells with magnolol decreased cell viability and cell proliferation in a concentration dependent manner. Magnolol induced G2/M phase cell cycle arrest in A431 cells at 12 h with a decreased expression of cell cycle proteins such as cyclin B1, cyclin A, CDK4, Cdc2 and simultaneous increase in the expression of Cip/p21, a cyclin-dependent kinase inhibitor. Magnolol induced apoptosis in vivo and in vitro with an increased cleavage of caspase-8 and PARP. Phospho-signal transducers and activators of transcription 3 (Tyr705), B-Raf, p-MEK, and p-AKT were down-regulated, whereas phosphorylation of ERK was induced by magnolol in A431 cells. Conclusions Magnolol pretreatments prevent UVB-induced skin cancer development by enhancing apoptosis, causing cell cycle arrest at G2/M phase, and affecting various signaling pathways. Magnolol could be a potentially safe and potent anticarcinogenic agent against skin cancer

    Ameliorative Effects of Dimetylthiourea and N-Acetylcysteine on Nanoparticles Induced Cyto-Genotoxicity in Human Lung Cancer Cells-A549

    Get PDF
    We study the ameliorative potential of dimetylthiourea (DMTU), an OH• radical trapper and N-acetylcysteine (NAC), a glutathione precursor/H2O2 scavenger against titanium dioxide nanoparticles (TiO2-NPs) and multi-walled carbon nanotubes (MWCNTs) induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml) of either of TiO2-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure), while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure). Investigations were carried out for cell viability, generation of reactive oxygen species (ROS), micronuclei (MN), and expression of markers of oxidative stress (HSP27, CYP2E1), genotoxicity (P53) and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d) activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO2-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO2-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages

    The potential of metering roundabouts: influence in transportation externalities

    Get PDF
    Roundabouts are increasingly being used on busy arterial streets for traffic calming purposes. However, if one roundabout leg is near a distribution hub, e.g. parking areas of shopping centers, the entry traffic volumes will be particularly high in peak hours. This paper investigated a partial-metering based strategy to reduce traffic-related costs in a corridor. Specifically, the resulting traffic performance, energy, environmental and exposure impacts associated with access roundabouts were studied in an urban commercial area, namely: a) to characterize corridor operations in terms of link-specific travel time, fuel consumption, carbon dioxide and nitrogen oxides emissions, and noise costs; b) to propose an optimization model to minimize above outputs; and c) to demonstrate the model applicability under different traffic demand and directional splits combinations. Traffic, noise and vehicle dynamics data were collected from a corridor with roundabouts and signalized intersections near a commercial area of GuimarĂŁes, Portugal. Microscopic traffic and emission modeling platforms were used to model traffic operations and estimate pollutant emissions, respectively. Traffic noise was estimated with a semi-dynamical model. Link-based cost functions were developed based on the integrated modeling structure. Lastly, a Sequential quadratic programming type approach was applied to find optimal timing settings. The benefit of the partial-metering system, in terms of costs, could be up to 13% with observed traffic volumes. The efficiency of the proposed system increased as entering traffic at the metered approaches increased (~7% less costs). The findings let one to quantify metering benefits near shopping areas

    Biological Convergence of Cancer Signatures

    Get PDF
    Gene expression profiling has identified cancer prognostic and predictive signatures with superior performance to conventional histopathological or clinical parameters. Consequently, signatures are being incorporated into clinical practice and will soon influence everyday decisions in oncology. However, the slight overlap in the gene identity between signatures for the same cancer type or condition raises questions about their biological and clinical implications. To clarify these issues, better understanding of the molecular properties and possible interactions underlying apparently dissimilar signatures is needed. Here, we evaluated whether the signatures of 24 independent studies are related at the genome, transcriptome or proteome levels. Significant associations were consistently observed across these molecular layers, which suggest the existence of a common cancer cell phenotype. Convergence on cell proliferation and death supports the pivotal involvement of these processes in prognosis, metastasis and treatment response. In addition, functional and molecular associations were identified with the immune response in different cancer types and conditions that complement the contribution of cell proliferation and death. Examination of additional, independent, cancer datasets corroborated our observations. This study proposes a comprehensive strategy for interpreting cancer signatures that reveals common design principles and systems-level properties
    • …
    corecore