3,018 research outputs found

    Bicycle Handlebar Width Does Not Affect Spirometry, Ventilation, or Gas Exchange

    Get PDF
    Bicycle fit may affect comfort, aerodynamics, efficiency, ventilation, and power generation. Handlebars determine how the rider interacts with the bicycle. A wide range of handlebar widths are commercially available, but it is unclear if the resultant position affects lung function, ventilation, gas exchange, or efficiency. PURPOSE We aimed to measure the effects of handlebar widths on ventilation, gas exchange, spirometry, and comfort during moderate constant power exercise. METHODS Twenty-four recreationally active adults completed the study (32 ± 5 yrs., 175 ± 9 cm, 74 ± 12 kg, 8 women, 16 men). Participants completed three moderate constant power bouts of exercise on a cycle ergometer (Lode Excalibur PFM) while using handlebars set equivalent to, or ± 4cm in width to the participant shoulder width. We used a one-way RMANOVA to compare the three handlebar widths. RESULTS There was no difference in gas exchange and ventilation between the three handlebar widths: V̇O2 (F[2, 23] = 0.99, p = 0.38), V̇CO2 (F[1.47, 23] = 0.39, p = 0.62), V̇E (F[2, 23] = 0.53, p = 0.59], VT (F[2, 23] = 0.44, p = 0.65], fBr (F[2, 23] = 0.17, p = 0.84], PetO2(F[2, 23] = 0.45, p = 0.64), PetCO2 (F[2, 23] = 0.25, p=0.78]. Similarly, there were no differences in inspiratory capacity during the bout (F[1.49, 22] = 1.34, p = 0.27) or any spirometry variables immediately following exercise: FVC (F[1.43, 22] = 0.88, p = 0.39], FEV1 (F[2, 22] = 0.30, p = 0.74], FEV1/FVC (F[2, 22] = 0.18, p = 0.84], PEF (F[2, 22] = 0.14, p = 0.87]. There was no difference in the overall comfort (F[2, 23] = 0.90, p = 0.41] or shoulder discomfort (F [2, 23] = 0.90, p = 0.42). CONCLUSIONS Bicycle handlebar widths within 4 cm shoulder width do not result in changes to ventilation, gas exchange, efficiency, spirometry, or comfort during moderate power cycling exercise. Within the limits of rider preference, comfort, and safety, handlebar width can be adjusted substantially for aerodynamic purposes without affecting rider physiology

    Self-monitoring for improving control of blood pressue in patients with hypertension

    Get PDF
    The objective of this review is to determine the effect of SBPM in adults with hypertension on blood pressure control as compared to OBPM or usual care

    Laboratory evaluation of the effect of nitric acid uptake on frost point hygrometer performance

    Get PDF
    Chilled mirror hygrometers (CMH) are widely used to measure water vapour in the troposphere and lower stratosphere from balloon-borne sondes. Systematic discrepancies among in situ water vapour instruments have been observed at low water vapour mixing ratios (<5 ppm) in the upper troposphere and lower stratosphere (UT/LS). Understanding the source of the measurement discrepancies is important for a more accurate and reliable determination of water vapour abundance in this region. We have conducted a laboratory study to investigate the potential interference of gas-phase nitric acid (HNO<sub>3</sub>) with the measurement of frost point temperature, and consequently the water vapour mixing ratio, determined by CMH under conditions representative of operation in the UT/LS. No detectable interference in the measured frost point temperature was found for HNO<sub>3</sub> mixing ratios of up to 4 ppb for exposure times up to 150 min. HNO<sub>3</sub> was observed to co-condense on the mirror frost, with the adsorbed mass increasing linearly with time at constant exposure levels. Over the duration of a typical balloon sonde ascent (90–120 min), the maximum accumulated HNO<sub>3</sub> amounts were comparable to monolayer coverage of the geometric mirror surface area, which corresponds to only a small fraction of the actual frost layer surface area. This small amount of co-condensed HNO<sub>3</sub> is consistent with the observed lack of HNO<sub>3</sub> interference in the frost point measurement because the CMH utilizes significant reductions (>10%) in surface reflectivity by the condensate to determine H<sub>2</sub>O

    The promise and peril of intensive-site-based ecological research: insights from the Hubbard Brook ecosystem study

    Get PDF
    Abstract. Ecological research is increasingly concentrated at particular locations or sites. This trend reflects a variety of advantages of intensive, site-based research, but also raises important questions about the nature of such spatially delimited research: how well does site based research represent broader areas, and does it constrain scientific discovery?We provide an overview of these issues with a particular focus on one prominent intensive research site: the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. Among the key features of intensive sites are: long-term, archived data sets that provide a context for new discoveries and the elucidation of ecological mechanisms; the capacity to constrain inputs and parameters, and to validate models of complex ecological processes; and the intellectual cross-fertilization among disciplines in ecological and environmental sciences. The feasibility of scaling up ecological observations from intensive sites depends upon both the phenomenon of interest and the characteristics of the site. An evaluation of deviation metrics for the HBEF illustrates that, in some respects, including sensitivity and recovery of streams and trees from acid deposition, this site is representative of the Northern Forest region, of which HBEF is a part. However, the mountainous terrain and lack of significant agricultural legacy make the HBEF among the least disturbed sites in the Northern Forest region. Its relatively cool, wet climate contributes to high stream flow compared to other sites. These similarities and differences between the HBEF and the region can profoundly influence ecological patterns and processes and potentially limit the generality of observations at this and other intensive sites. Indeed, the difficulty of scaling up may be greatest for ecological phenomena that are sensitive to historical disturbance and that exhibit the greatest spatiotemporal variation, such as denitrification in soils and the dynamics of bird communities. Our research shows that end member sites for some processes often provide important insights into the behavior of inherently heterogeneous ecological processes. In the current era of rapid environmental and biological change, key ecological responses at intensive sites will reflect both specific local drivers and regional trends

    On the Role of Penning Ionization in Photoassociation Spectroscopy

    Full text link
    We study the role of Penning ionization on the photoassociation spectra of He(^3S)-He(^3S). The experimental setup is discussed and experimental results for different intensities of the probe laser are shown. For modelling the experimental results we consider coupled-channel calculations of the crossing of the ground state with the excited state at the Condon point. The coupled-channel calculations are first applied to model systems, where we consider two coupled channels without ionization, two coupled channels with ionization, and three coupled channels, for which only one of the excited states is ionizing. Finally, coupled-channel calculations are applied to photoassociation of He(^3S)-He(^3S) and good agreement is obtained between the model and the experimental results.Comment: 14 pages, 18 figures, submitted to the special issue on Cold Molecules of J. Phys.

    U.S. GLOBAL CHANGE RESEARCH PROGRAM CLIMATE SCIENCE SPECIAL REPORT (CSSR)

    Get PDF
    Fifth-Order Draft Table of Contents Front Matter About This Report........................................................................................ 1 Guide to the Report......................................................................................4 Executive Summary ................................................................................... 12 Chapters 1. Our Globally Changing Climate .......................................................... 38 2. Physical Drivers of Climate Change ................................................... 98 3. Detection and Attribution of Climate Change .................................... 160 4. Climate Models, Scenarios, and Projections .................................... 186 5. Large-Scale Circulation and Climate Variability ................................ 228 6. Temperature Changes in the United States ...................................... 267 7. Precipitation Change in the United States ......................................... 301 8. Droughts, Floods, and Hydrology ......................................................... 336 9. Extreme Storms ....................................................................................... 375 10. Changes in Land Cover and Terrestrial Biogeochemistry ............ 405 11. Arctic Changes and their Effects on Alaska and the Rest of the United States..... 443 12. Sea Level Rise ....................................................................................... 493 13. Ocean Acidification and Other Ocean Changes .............................. 540 14. Perspectives on Climate Change Mitigation .................................... 584 15. Potential Surprises: Compound Extremes and Tipping Elements .......... 608 Appendices A. Observational Datasets Used in Climate Studies ............................. 636 B. Weighting Strategy for the Fourth National Climate Assessment ................ 642 C. Detection and Attribution Methodologies Overview ............................ 652 D. Acronyms and Units ................................................................................. 664 E. Glossary ...................................................................................................... 66

    U.S. GLOBAL CHANGE RESEARCH PROGRAM CLIMATE SCIENCE SPECIAL REPORT (CSSR)

    Get PDF
    Fifth-Order Draft Table of Contents Front Matter About This Report........................................................................................ 1 Guide to the Report......................................................................................4 Executive Summary ................................................................................... 12 Chapters 1. Our Globally Changing Climate .......................................................... 38 2. Physical Drivers of Climate Change ................................................... 98 3. Detection and Attribution of Climate Change .................................... 160 4. Climate Models, Scenarios, and Projections .................................... 186 5. Large-Scale Circulation and Climate Variability ................................ 228 6. Temperature Changes in the United States ...................................... 267 7. Precipitation Change in the United States ......................................... 301 8. Droughts, Floods, and Hydrology ......................................................... 336 9. Extreme Storms ....................................................................................... 375 10. Changes in Land Cover and Terrestrial Biogeochemistry ............ 405 11. Arctic Changes and their Effects on Alaska and the Rest of the United States..... 443 12. Sea Level Rise ....................................................................................... 493 13. Ocean Acidification and Other Ocean Changes .............................. 540 14. Perspectives on Climate Change Mitigation .................................... 584 15. Potential Surprises: Compound Extremes and Tipping Elements .......... 608 Appendices A. Observational Datasets Used in Climate Studies ............................. 636 B. Weighting Strategy for the Fourth National Climate Assessment ................ 642 C. Detection and Attribution Methodologies Overview ............................ 652 D. Acronyms and Units ................................................................................. 664 E. Glossary ...................................................................................................... 66

    Contrasting Development of Canopy Structure and Primary Production in Planted and Naturally Regenerated Red Pine Forests

    Get PDF
    Globally, planted forests are rapidly replacing naturally regenerated stands but the implications for canopy structure, carbon (C) storage, and the linkages between the two are unclear. We investigated the successional dynamics, interlinkages and mechanistic relationships between wood net primary production (NPPw) and canopy structure in planted and naturally regenerated red pine (Pinus resinosa Sol. ex Aiton) stands spanning ≥ 45 years of development. We focused our canopy structural analysis on leaf area index (LAI) and a spatially integrative, terrestrial LiDAR-based complexity measure, canopy rugosity, which is positively correlated with NPPw in several naturally regenerated forests, but which has not been investigated in planted stands. We estimated stand NPPw using a dendrochronological approach and examined whether canopy rugosity relates to light absorption and light–use efficiency. We found that canopy rugosity increased similarly with age in planted and naturally regenerated stands, despite differences in other structural features including LAI and stem density. However, the relationship between canopy rugosity and NPPw was negative in planted and not significant in naturally regenerated stands, indicating structural complexity is not a globally positive driver of NPPw. Underlying the negative NPPw-canopy rugosity relationship in planted stands was a corresponding decline in light-use efficiency, which peaked in the youngest, densely stocked stand with high LAI and low structural complexity. Even with significant differences in the developmental trajectories of canopy structure, NPPw, and light use, planted and naturally regenerated stands stored similar amounts of C in wood over a 45-year period. We conclude that widespread increases in planted forests are likely to affect age-related patterns in canopy structure and NPPw, but planted and naturally regenerated forests may function as comparable long-term C sinks via different structural and mechanistic pathways
    • …
    corecore